水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2016, Vol. 35 ›› Issue (4): 80-88.doi: 10.11660/slfdxb.20160410

• 水力发电学报 • 上一篇    下一篇

基于混沌优化BP神经网络的江河涌潮短期预报模型

  

  • 出版日期:2016-04-25 发布日期:2016-04-25

Short-term prediction model of river tidal bores based on chaos optimization algorithms and BP neural networks

  • Online:2016-04-25 Published:2016-04-25

Abstract: To improve the accuracy of tidal prediction, this paper presents a time series model using artificial neural network combined with chaos theory, and this model has been developed to overcome the limitation of empirical model and traditional neural network model. It determines the existence of chaotic behaviors in the data series of every-other-day difference in tidal time; then, phase-space reconstruction for the error series of empirical model is applied to neural network inputs. The model can give a prediction of errors that is useful for modifying or updating the final results. Prediction of the tidal times during one month at four tide observation stations on the Qiantang River shows that the model reduces the root mean square error (RMSE) by 83.9% and has accuracy higher than the traditional model.

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn