水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2015, Vol. 34 ›› Issue (6): 191-196.

• 水力发电 • 上一篇    下一篇

基于鱼群算法与有导师神经网络的轴心轨迹智能识别

  

  • 出版日期:2015-06-25 发布日期:2015-06-25

Intelligent recognition of axis orbits with fish-based algorithms and neural networks with mentors

  • Online:2015-06-25 Published:2015-06-25

Abstract: A new identification and classification of unit failures by computer intelligence is realized by using the Canny operator and Hu invariant moments in the image discipline instead of human eyes to identify axis orbit, and applying artificial fish streamline redundant data and PNN fault classification. This paper proves that this method has a higher recognition accuracy and efficiency than the traditional neural network.

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn