水力发电学报 ›› 2015, Vol. 34 ›› Issue (6): 191-196.
• 水力发电 • 上一篇 下一篇
出版日期:
发布日期:
Online:
Published:
Abstract: A new identification and classification of unit failures by computer intelligence is realized by using the Canny operator and Hu invariant moments in the image discipline instead of human eyes to identify axis orbit, and applying artificial fish streamline redundant data and PNN fault classification. This paper proves that this method has a higher recognition accuracy and efficiency than the traditional neural network.
李强,王文斌,刘学. 基于鱼群算法与有导师神经网络的轴心轨迹智能识别[J]. 水力发电学报, 2015, 34(6): 191-196.
LI Qiang,WANG Wenbin,LIU Xue. Intelligent recognition of axis orbits with fish-based algorithms and neural networks with mentors[J]. JOURNAL OF HYDROELECTRIC ENGINEERING, 2015, 34(6): 191-196.
0 / / 推荐
导出引用管理器 EndNote|Reference Manager|ProCite|BibTeX|RefWorks
链接本文: http://www.slfdxb.cn/CN/
http://www.slfdxb.cn/CN/Y2015/V34/I6/191
Cited