水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2015, Vol. 34 ›› Issue (3): 1-7.

• 水力发电 •    下一篇

基于小波支持向量机耦合的月径流预测方法

  

  • 出版日期:2015-03-25 发布日期:2015-03-25

Wavelet support vector machine-coupling method for monthly runoff forecasting

  • Online:2015-03-25 Published:2015-03-25

Abstract: A wavelet support vector regression-coupling (WSVR) model as an integration of discrete wavelet transform (DWT) and support vector regression model (SVR) was developed to predict monthly runoff. This model uses the Mallat algorithm to decompose a given series of monthly runoff into sub-series of different time scales and reconstructs it, and then inputs the effective sub-series into the SVR model. It evaluates the accuracy in terms of RMS error (RMSE), mean absolute error (MAE), deterministic coefficient (DC), and correlation coef?cient (R). It was applied to forecasting of monthly runoff at the Zhangjiashan hydrologic station on the Jinghe River. The results show errors in the calculations of verification period, RMSE=12.5m3/s, MAE=7.74m3/s, DC=0.87, and R=0.935, a better accuracy in comparison with the optimized SVR model's errors of RMSE=27.9m3/s, MAE=13.43m3/s, DC=0.34, and R= 0.662. Thus, the WSVR coupling model improves monthly runoff forecasting.

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn