水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2025, Vol. 44 ›› Issue (3): 87-98.doi: 10.11660/slfdxb.20250308

• • 上一篇    下一篇

深度学习驱动的无人机河道巡检异物监测及定位技术研究

  

  • 出版日期:2025-03-25 发布日期:2025-03-25

Research on foreign object detection and localization in UAV river patrol driven by deep learning

  • Online:2025-03-25 Published:2025-03-25

摘要: 随城市规模扩大,河道岸线不断遭到侵占,河道过流能力和水环境均遭受严重破坏,对于复杂河道急需高效监管方法。本文采用无人机获取河道及两岸影像,使用生成对抗网络进行数据增强,基于YOLOv5深度学习算法和坐标转换的定位算法,对五种典型河道异物进行识别与定位。其中目标识别算法在主干网络引入注意力机制,同时采用EIOU-Focal Loss作为模型损失函数,以提升模型的检测精度与收敛速度。结果表明经过数据增强后,模型识别的平均精度均值(mAP)最高提升了9.9%。消融实验的结果表明综合改进后的模型具有最高的检测精度,mAP最高达到0.96,较原始模型提升11.6%。定位结果表明算法目标物实际平均误差不超过3 m,具有较高精度。本文利用改进后模型对福建地区闽江河段的无人机影像进行了检测识别,改进后模型对目标物检测具有更高准确性,为相关研究提供参考。

关键词: 河道检测, 异物识别, 深度学习, 目标检测算法, 生成对抗网络

Abstract: As the city expands, the river shoreline is constantly being encroached upon, and the river's flow capacity and water environment are damaged severely. Therefore, efficient methods for monitoring complicated river courses are urgently needed. This paper precents a new method for collecting images and data of a river and its banks using drones and enhancing data with the Generative Adversarial Network. We identify and locate five kinds of typical foreign bodies on the river, based on the YOLOv5 algorithm and the coordinate transformation localization algorithm. The target recognition algorithm of this model introduces the attention mechanism into the backbone network and uses EIOU-Focal Loss as its loss function to improve YOLOv5 in detection accuracy and convergence speed. The results show that data enhancement improves the model’s target recognition and raises the mean Average Precision (mAP) by 9.9%. The ablation experiment results verify that this model has the highest detection accuracy, with its maximum mAP of 0.96 or an increase of 11.6% relative to the one before improvement. Its positioning results show the real average error of the algorithm target object is not greater than 3m, which means a high accuracy. Application of the improved model to the Minjiang River section in Fujian has verified its higher accuracy in detecting target objects and its significance for related research.

Key words: river detection, foreign body recognition, deep learning, YOLOv5, DCGAN

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn