水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2025, Vol. 44 ›› Issue (2): 50-62.doi: 10.11660/slfdxb.20250205

• • 上一篇    下一篇

电能-调频市场下梯级水风光储联合系统多目标优化调度

  

  • 出版日期:2025-02-25 发布日期:2025-02-25

Multi-objective optimal dispatch of cascade hydro-wind-solar-storage hybrid systems in power and frequency regulation market

  • Online:2025-02-25 Published:2025-02-25

摘要: 风光新能源出力不确定性降低市场竞争,梯级水风光储互补参与电能-调频市场已成为实现高质量可再生能源供应的有效手段。为此,首先提出梯级水风光储系统参与电能-调频辅助服务市场的日前投标模型和实时调整及调频响应模型。其次,针对风光出力的不确定性,采用基于Wasserstein距离模糊集的分布鲁棒机会约束,构建梯级水风光储参与市场的分布鲁棒机会约束模型。最后,以日前市场收益最大和实时调整偏差最小进行双目标优化。采用规格化平面约束法求取帕累托前沿解,并采用逼近理想解排序法(TOPSIS)法筛选帕累托解集得到最优方案。以西南地区梯级水风光储系统为例展开算例分析,验证了模型的合理性和所提方法的有效性。

关键词: 梯级水电, 联合运行, 调频辅助市场, 分布鲁棒机会约束, 规格化平面约束法

Abstract: Uncertainties in wind and solar power outputs reduce their market competitiveness. Participation of cascade hydropower, wind, solar, and storage systems in energy and frequency regulation markets has become an effective means to achieve high-quality renewable energy supply. This study first develops a day-ahead bidding model and a real-time adjustment and frequency regulation response model for such hybrid systems that participate in these regulation markets. To address the uncertainty in wind and solar outputs, we develop a distributionally robust chance-constrained model, based on the Wasserstein distance fuzzy set for the systems' market participation. Then, a bi-objective optimization is made to maximize day-ahead market revenue and minimize real-time adjustment deviations. And a normalized normal constraint (NNC) method is used to obtain Pareto frontier solutions; the Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) method is used to select the optimal solution from the Pareto front. Application to a case study of a river basin in southwestern China verifies our method and the models prove effective, rational, and applicable.

Key words: cascade hydropower station, joint operation, frequency regulation ancillary services market, distributionally robust chance constraint, normalized normal constraint method

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn