水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2025, Vol. 44 ›› Issue (1): 64-76.doi: 10.11660/slfdxb.20250106

• • 上一篇    下一篇

高心墙堆石坝筑坝料本构模型参数反演策略对比研究

  

  • 出版日期:2025-01-25 发布日期:2025-01-25

Comparative study of inversion strategies for constitutive model parameters of materials in high core wall rockfill dams

  • Online:2025-01-25 Published:2025-01-25

摘要: 随着堆石坝高度从200 m级向300 m级迈进,大坝变形协调控制变得尤为重要,基于参数反演的堆石坝有限元模拟是进行变形性态评估的常用手段之一。为探讨不同参数反演策略在高心墙堆石坝中的适用性,本文进行了参数联合反演与解耦反演策略对比研究。采用神经网络构建有限元正算的代理模型,采用群体智能优化算法进行迭代寻优,反演得到静力、流变和湿化模型参数。相较于人工干预少、效率高的参数联合反演方法,参数解耦反演方法通过分阶段、分区域的材料参数反演,能够更合理地反映填筑蓄水过程对堆石坝变形的影响。基于解耦反演参数计算的坝体变形与实测值吻合良好,更有效地揭示了坝体在填筑、蓄水及长期运行过程中的变形空间分布和演变规律。

关键词: 高心墙堆石坝, 监测数据, 参数反演, 智能优化算法, 解耦反演

Abstract: As rockfill dams advance in height from the 200-meter to 300-meter class, a coordinated control of dam deformation becomes particularly important, and their deformation behaviors are commonly assessed using parametric inversion-based finite element stress-deformation analysis. To investigate the applicability of different parametric inversion strategies to high-core-wall rockfill dams, this paper presents a comparative study of the two strategies-parametric joint inversion and decoupled inversion. We use the neural network to construct an agent model for the analysis by FEM, and adopt a population-intelligent iterative optimization algorithm to calculate the inversion of static, rheological, and humidification model parameters. Compared with the parameter joint inversion that features with less manual intervention and high efficiency, the decoupled inversion reflects more reasonably the influence of the filling and impounding process on rockfill dam deformation through a staged and zoned inverting procedure. It produces better model parameters and dam body deformation calculations in good agreement with measurements, thus achieving better effects in revealing deformation evolution and its spatial distribution trends in a dam body during filling, impounding and long-term operation.

Key words: high core wall rockfill dam, monitoring datum, parameter inversion, intelligent optimization algorithm, decoupled inversion

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn