水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2024, Vol. 43 ›› Issue (12): 43-54.doi: 10.11660/slfdxb.20241205

• • 上一篇    下一篇

基于代理模型的地下厂房施工通风方案多目标优化研究

  

  • 出版日期:2024-12-25 发布日期:2024-12-25

Study on multi-objective optimization of underground powerhouse construction ventilation schemes based on surrogate model

  • Online:2024-12-25 Published:2024-12-25

摘要: 制定合理的施工通风方案是保障地下厂房安全、高效施工的关键。针对现有通风方案优化研究大多仅从通风散烟时间、污染物浓度均值等单一优化目标出发,且传统数值模拟方法存在建模成本高、计算效率低等不足,本文提出基于IDBO改进LSSVR代理模型的地下厂房施工通风方案多目标优化方法。首先,以通风效果和通风成本为优化目标,以风机风量、风管口至掌子面距离等通风参数为设计变量,构建施工通风方案多目标优化数学模型;其次,结合LSSVR在处理小样本数据预测方面的优势,建立通风效果预测IDBO-LSSVR代理模型,采用IDBO优化LSSVR正则化参数γ和核参数σ,解决模型超参数取值问题,实现通风效果目标的快速预测,进而结合NSGA-Ⅱ算法进行多目标优化求解;最后,将本文所提方法应用于洛宁抽水蓄能电站地下厂房工程,在通风效果快速准确预测的基础上实现了施工通风方案的优化。结果表明,优化方案的通风除尘率提高了20.01%,通风成本降低了9.52%。

关键词: 地下厂房, 施工通风, 多目标优化, 代理模型, 最小二乘支持向量回归

Abstract: Formulating a reasonable construction ventilation scheme is the key to ensuring safety and efficiency in underground powerhouse construction. Most of the previous studies on ventilation scheme optimization started from a single optimization objective such as ventilation smoke dissipation time and average pollutant concentration; traditional numerical simulation methods have the shortcomings of high modeling cost and low computational efficiency. This paper presents a new multi-objective optimization method for the construction ventilation schemes of an underground powerhouse based on an improved Least Squares Support Vector Regression (LSSVR) surrogate model of Improved Dung Beetle Optimizer (IDBO). First, a mathematical model for multi-objective optimization of the schemes is constructed, taking ventilation effect and ventilation cost as optimization objectives, and selecting ventilation parameters as design variables, such as fan airflow and the distance from the duct opening to the palm surface. Then, an IDBO-LSSVR surrogate model is constructed for prediction of the ventilation effect by combining the advantage of LSSVR in predicting small-sample data; the IDBO-improved LSSVR regularization parameter is used to optimize the LSSVR regularization parameter γ and kernel parameter σ, thereby overcoming the difficulty in model hyperparameter specification and achieving a fast prediction of the ventilation effect target. And combined with the NSGA-II algorithm, the surrogate model gives a multi-objective optimization solution. Finally, this method is applied to an underground plant project at the Luoning pumped storage power station, achieving the optimized construction ventilation scheme and a fast and accurate prediction of ventilation effect. The results show that the optimized scheme increases the ventilation and dust removal rate by 20.01%, and reduces the ventilation cost by 9.52%.

Key words: underground powerhouse, construction ventilation, multi-objective optimization, surrogate model, least squares support vector regression

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn