水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2024, Vol. 43 ›› Issue (12): 23-33.doi: 10.11660/slfdxb.20241203

• • 上一篇    下一篇

Swin-Unet在坝面混凝土裂缝自动标注与分割方法的研究

  

  • 出版日期:2024-12-25 发布日期:2024-12-25

Automatic annotation and segmentation of dam concrete cracks in images based on Swin-Unet

  • Online:2024-12-25 Published:2024-12-25

摘要: 针对一般分割模型用于表观裂缝分割时训练数据短缺导致的模型精度不足的问题,本文提出了一种适用于坝面混凝土裂缝分割的图像处理方法,该方法融合图像特征提取与深度学习技术,实现了裂缝的自动标注与高精度分割。该算法首先采用Otsu二值化和边缘检测相结合的策略,融合裂缝的形状特征与轮廓信息,对无标签的裂缝缺陷进行自动标注,构建了一个包含19101张裂缝掩膜的大规模数据集;然后将Swin-Transformer的层次化注意力机制引入Unet架构,设计了一种结合Swin-Transformer和Unet的混合模型(Swin-Unet);最后在自建数据集上对该模型进行了实验验证和结果分析。结果表明:Swin-Unet在裂缝分类准确度上达到最高(100%),在分割IoU指标上达到93.1%,比Unet分割模型(85.6%)提高了7.5个百分点,表明Swin-Transformer架构的引入能够增强模型对全局特征与局部特征的关联能力,显著提高裂缝缺陷的分割精度;此外,通过对裂缝最小外接矩形的分析发现,裂缝的方向分布与形状分布具有明显聚集性,这对于理解裂缝形成的机制以及预测裂缝扩展方向具有重要参考价值。

关键词: 深度学习, 裂缝分割, 自动标注, Otsu二值化, 边缘检测, 注意力机制

Abstract: A general segmentation model for dam concrete surface cracks in images often faces a shortage of training data due to the high cost of manual annotation, resulting in insufficient accuracy in its results. This paper presents an automatic annotation and segmentation algorithm that integrates image feature extraction and deep learning techniques. The algorithm first adopts a strategy for combining binarization and edge detection to annotate unlabeled crack defects automatically, and constructs a large-scale dataset of 19,101 crack masks. Then, a hybrid model for combining Swin-Transformer and Unet (Swin-Unet) is designed by introducing the hierarchical attention mechanism of Swin-Transformer into the Unet architecture. Finally, the model is validated through experiments and result analyses on the self-constructed datasets. The results show this Swin-Unet model achieves the highest crack classification accuracy (100%) and a segmentation IoU of 93.1% or 7.5% improvement over the Unet segmentation model (85.6%). This indicates the introduction of the Swin-Transformer architecture enhances the model's capability of associating global and local features, significantly improving the crack defect segmentation accuracy. Besides, an analysis of the minimum enclosing rectangle of cracks reveals significant clustering in both the direction and shape distribution of cracks, deepening our understanding of the mechanisms of crack formation and useful for predicting crack propagation direction.

Key words: deep learning, crack segmentation, automatic annotation, Otsu binarization, edge detection, attention mechanism

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn