水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2024, Vol. 43 ›› Issue (12): 13-22.doi: 10.11660/slfdxb.20241202

• • 上一篇    下一篇

混凝土坝施工场景人-机-环多要素识别方法

  

  • 出版日期:2024-12-25 发布日期:2024-12-25

Recognition method for multi-elements in human-machine-environment scenarios of concrete dam construction

  • Online:2024-12-25 Published:2024-12-25

摘要: 混凝土坝施工空间狭窄、工序转换不断、人员-机械-环境(人-机-环)等要素繁多,而且存在要素遮挡、密集重叠、尺寸和方向各异等情况,导致传统机器视觉目标识别方法难以满足复杂施工现场目标识别要求。因此,本文提出混凝土坝施工场景人-机-环多要素识别的YOLOv5-SS新方法。通过插入CBAM注意力模块,改进目标检测器的性能,增强目标检测器对不同尺寸和位置的人-机-环要素敏感性;同时融入加权双向特征金字塔网络(BiFPN),使得目标检测器聚焦于实时人-机-环要素等关键图像信息。为验证所提方法识别能力,以混凝土拱坝施工现场的图像信息为基础数据集,通过对比YOLOv5-SS、YOLOv5和Faster R-CNN等模型,验证了所提方法能有效提高混凝土坝施工场景中各类目标的效率和精准度。

关键词: 混凝土坝, 人-机-环, 多要素识别, 计算机视觉, YOLOv5-SS

Abstract: For concrete dam construction, traditional computer vision target recognition methods are difficult to meet the requirements for intelligent detection in complex construction sites, as it involves narrow spaces, continuous process transitions, and various other elements such as personnel, machinery, and environment (human-machine-environment or HME). These elements often lead to occlusions, dense overlaps, and variations in size and orientation. This paper describes a new method, YOLOv5-SS, for recognition of the multiple elements in the HME scenarios of such construction. By integrating a CBAM attention module, this method improves the performance of the object detector and enhances its sensitivity to HME elements of different sizes and positions. And, it incorporates the weighted bidirectional feature pyramid network (BiFPN) to enable the object detector to focus on key image information related to real-time HME elements. To validate the recognition capability of this method, a dataset based on image information from a concrete arch dam construction site is used. Comparison of YOLOv5-SS with the YOLOv5 and Faster R-CNN models demonstrates it effectively improves the efficiency and accuracy of target detection in concrete dam construction scenarios.

Key words: concrete dam construction, human-machine-environment, multi-elements recognition, computer vision, YOLOv5-SS

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn