水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2024, Vol. 43 ›› Issue (11): 92-102.doi: 10.11660/slfdxb.20241109

• • 上一篇    下一篇

离心泵叶轮动应力的长短期记忆网络预测与疲劳分析

  

  • 出版日期:2024-11-25 发布日期:2024-11-25

Dynamic stress prediction and fatigue analysis of centrifugal pump impeller based on long short-term memory network

  • Online:2024-11-25 Published:2024-11-25

摘要: 低比转速离心泵在运行时会伴随着应力集中问题,应力集中和动应力变化可能导致低比转速离心泵发生疲劳损伤。传统的有限元方法在分析应力疲劳问题时受限于预测能力不足。本文提出了一种基于长短期记忆网络(LSTM)的离心泵疲劳寿命预测方法,通过利用长短期记忆网络对额定工况和小流量工况下动应力时间序列信号进行训练及预测,并结合疲劳寿命模型对不同运行条件下的离心泵运行寿命进行预测。结果表明:LSTM模型能够准确捕捉动应力的变化趋势,额定工况下的动应力拟合效果明显优于小流量工况。额定工况下动应力预测集MAPE值相较于小流量工况下降了21.33%。预测动应力为2.28×107 Pa时,其运行寿命可达3×108的循环次数,满足高强度运行的寿命要求。本文所提出的方法能够有效提高离心泵的运行寿命预测精度,为离心泵的管理和维护提供更可靠的支持。

关键词: 低比转速离心泵, 长短期记忆网络, 动应力, 疲劳寿命

Abstract: Low-speed centrifugal pumps are prone to stress concentration issues during operation, which, along with dynamic stress variations, may lead to fatigue damage. Traditional finite element methods are limited in predicting fatigue life accurately. This paper describes a new fatigue life prediction method based on Long Short-Term Memory (LSTM) networks. It predicts the pump's operational life under different conditions, using LSTM networks to train and predict dynamic stress time series signals under rated and low-flow conditions, and integrating fatigue life models. Results show that this LSTM model captures stress variations accurately and can achieve fitting performance under rated conditions superior to that under low-flow conditions. The prediction set under rated conditions has a Mean Absolute Percentage Error (MAPE) of 21.3% lower than that under low-flow conditions. The operational life achieves 3×108 cycles under predicted stress of 2.28×107 Pa, meeting the life requirements of high-intensity operation. As a reliable, useful tool for pump management and maintenance, our method improves significantly the accuracy of centrifugal pump operational life prediction.

Key words: low specific speed centrifugal pump, long short-term memory network, dynamic stress, fatigue life

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn