水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2024, Vol. 43 ›› Issue (10): 121-136.doi: 10.11660/slfdxb.20241011

• • 上一篇    

大坝变形极端梯度提升区间预测模型应用研究

  

  • 出版日期:2024-10-25 发布日期:2024-10-25

Dam deformation interval prediction model based on XGBoost

  • Online:2024-10-25 Published:2024-10-25

摘要: 大坝在运行期间,其原始监测数据呈现出复杂、多样且时变的特征,该情况导致了长期监测预警的有效性与准确性逐渐减弱,进而增加了工程失事的风险。因此,建立高效准确的变形监测模型对大坝安全评估具有重要意义。由于大坝系统固有的不确定性,传统的确定性点预测面临无法规避的误差挑战,难以确定坝体变形主要影响因素且精度有待提高。本文提出了一种新的方法,采用极端梯度提升结合自举法构建预测区间,同时,通过弹性网络法进行位移影响因子集的特征提取,使用贝叶斯优化算法搜索最优模型参数。该模型通过自举法结合多个集成模型,有效估计了模型的偏差;通过训练组合模型得到残差,进一步估计了随机噪声的方差,最终实现了对大坝变形不确定性的量化。文章结合白鹤滩特高拱坝运行期坝体变形监测资料进行工程实例验证,通过对比采用单一模型的预测结果和实测结果,验证了本文提出的混合模型方法的高精度和良好鲁棒性,均方根误差仅为0.0112,模型准确率达到96%,效能提升较单一模型最高提高71%。

关键词: 水利工程, 变形预测, XGBoost, 区间分析, 贝叶斯优化

Abstract: During the operation of a dam, its original monitoring data exhibit complex, diverse, and time-varying characteristics, leading to gradual reduction in the effectiveness and accuracy of long-term monitoring warnings and thereby increasing disaster risks. Therefore, developing efficient and accurate deformation monitoring models is crucial to dam safety assessment. Traditional deterministic point predictions of a dam system, due to its inherent uncertainty, are faced with unavoidable challenges in error, bringing in low accuracy and a difficulty in determining the main factors of dam deformation. This paper presents a novel method that combines eXtreme Gradient Boosting with Bootstrap to construct prediction intervals. We use Elastic Net to extract the features of displacement influencing factors, and Bayesian Optimization to search for its optimal parameters. It can effectively estimate its own bias by combining multiple XGBoost models through Bootstrap; through residual training of the ensemble model, it further estimates the variance of random noise, quantifying the uncertainty of dam deformation. We validate this method in engineering case studies against the monitoring data from the Baihetan extra high arch dam under operation. Comparison of its predictions with the measurements and those predicted using a single model verifies its high accuracy and robustness, showing its root mean square error of only 0.0112. The accuracy of the model reaches 96%, and the efficiency is raised by up to 71% compared with the single model.

Key words: hydraulic engineering, deformation prediction, XGBoost, interval analysis, Bayesian optimization

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn