水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2024, Vol. 43 ›› Issue (10): 42-52.doi: 10.11660/slfdxb.20241004

• • 上一篇    下一篇

基于深度学习的河道非恒定流糙率反演方法

  

  • 出版日期:2024-10-25 发布日期:2024-10-25

Roughness inversion method for river unsteady flow simulations based on deep learning

  • Online:2024-10-25 Published:2024-10-25

摘要: 糙率是反映水流阻力影响的一个综合性系数,直接影响一维非恒定流的模拟精度。以往糙率反演研究很少考虑其随流量或水位的变化。为此,本文将糙率视为流量的分段线性函数,提出一种基于长短期记忆神经网络的河道非恒定流糙率反演方法,以数据驱动方式实现对糙率的直接反演;并针对天然长河段计算断面多、流量变化范围大的特点,提出一种基于逐次逼近的分步反演策略来降低反演求解维度。以向家坝库区河道为例进行数值检验,结果表明:利用不同流量级下的糙率反演值进行一维非恒定流计算,得到的沿程水位变化过程与实测资料较为吻合,且计算精度明显高于不考虑糙率随流量变化的结果。该结果验证了方法的有效性,为天然长河道糙率反演提供了新途径。

关键词: 长短期记忆神经网络, 分步反演策略, 天然河道, 糙率反演, 一维非恒定流

Abstract: Manning’s roughness coefficient, as a comprehensive indicator of flow resistance, significantly affects the accuracy of one-dimensional unsteady flow simulations. Previous studies based on roughness inversion lack consideration of the roughness that varies with the discharge or water level. This paper develops a roughness inversion method for river unsteady flow simulations based on the long short-term memory neural network, through treating roughness as a continuous piecewise linear function of discharge, so as to realize the direct inversion of roughness using a data-driven method. We also develop a successive approximation based on a stepwise inversion strategy to reduce the dimension of inversion solutions, a useful technique for long natural rivers that feature a great number of cross sections and a large discharge variation range. This inversion method is evaluated through a case study of the reaches of the Xiangjiaba Reservoir, China. The results show that by using the roughness values inverted from the observed data under different discharge grades, its calculations of the water stage hydrographs are in good agreement with measurements, and its accuracy is significantly higher than the methods without considering roughness variations with discharge. The results verify the effectiveness of our new method that provides a novel approach to the roughness inversion of flows in long rivers. Keywords: long short-term memory neural network; stepwise inversion strategy; natural river; roughness inversion; one-dimensional unsteady flow

Key words: long short-term memory neural network, stepwise inversion strategy, natural river, roughness inversion, one-dimensional unsteady flow

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn