水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2024, Vol. 43 ›› Issue (7): 97-108.doi: 10.11660/slfdxb.20240709

• • 上一篇    下一篇

改进小波阈值与优化BiLSTM组合的大坝变形预测方法

  

  • 出版日期:2024-07-25 发布日期:2024-07-25

Improved wavelet thresholding combined with optimized BiLSTM for dam deformation prediction

  • Online:2024-07-25 Published:2024-07-25

摘要: 变形是反映大坝结构状态变化的重要指标。由于变形数据的非线性特点和其背后复杂的机理,提升变形的预测精度对大坝安全及结构控制具有重要意义。为此,基于融合建模理念提出了一种组合的大坝变形预测方法,该方法结合了改进小波阈值去噪与鹈鹕优化算法(POA)优化的双向长短期神经网络(BiLSTM)。首先,采用改进小波阈值去噪法对变形实测数据序列进行处理;其次,通过POA搜索最优超参数组合用于优化BiLSTM模型;最后,基于最优超参数下的BiLSTM模型进行大坝变形预测。工程实例表明,改进小波阈值法具有更好的去噪效果,POA-BiLSTM能够准确预测大坝变形。在最终测试集上平均MAE、MAPE、RMSE、R2分别为0.244、0.041、0.301、0.906。相较于其他方法,表现出更高的预测准确性和稳健性,可为大坝变形监测提供参考。

关键词: 改进小波阈值, 鹈鹕优化算法, 双向长短期神经网络, 去噪, 变形预测

Abstract: Deformation serves as a crucial indicator of the structural changes of dams. Enhancing the prediction accuracy of dam deformation is of paramount significance for the safety and structural control of dams, due to the nonlinear characteristics of deformation data and the underlying intricate mechanism. This paper develops a combined approach for dam deformation prediction based on the integrated modeling concept, integrating an improved wavelet threshold denoising and a Pelican Optimization Algorithm (POA) optimized Bidirectional Long Short-Term Memory (BiLSTM) network. First, the deformation measurement data sequence is processed using an improved wavelet threshold denoising method; then, POA is used to search for the optimal hyperparameter combination to optimize the BiLSTM model; finally, dam deformation prediction is conducted based on the BiLSTM with the optimal hyperparameters. Engineering case studies demonstrate that this improved wavelet threshold method produces superior denoising effects, and POA-BiLSTM gives a satisfactory accuracy for dam deformation prediction. And on the ultimate test set, it has achieved the average MAE, MAPE, RMSE, and R2 of 0.244, 0.041, 0.301, and 0.906, respectively. Compared to other methods, it exhibits higher predictive accuracy and robustness, offering valuable insight for dam deformation monitoring.

Key words: improved wavelet thresholding, pelican optimization algorithm, bidirectional long short-term memory network, denoising, deformation prediction

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn