水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2024, Vol. 43 ›› Issue (4): 81-96.doi: 10.11660/slfdxb.20240408

• • 上一篇    下一篇

梯级水电短期调度模型及其求解的蝗虫视觉进化神经网络

  

  • 出版日期:2024-04-25 发布日期:2024-04-25

Cascade hydropower stations short-term schedule modeling and related locust visual evolutionary neural networks

  • Online:2024-04-25 Published:2024-04-25

摘要: 融合梯级水电站短期调度中电网调峰与发电量相互制约的因素,探讨水电调度模型的设计及求解的改进型蝗虫视觉进化神经网络。调度模型设计中,依据水量平衡方程,在充分考虑机组出力限制、不规则震动区等与水头相关的复杂约束及尾水顶托影响下,构建以调峰效果与发电效益为性能指标的厂网协调短期调度模型。神经网络设计中,在已有蝗虫视觉神经网络基础上引入视觉残留机制、半波整流机制,以及在兴奋层引入局部均值滤波,获得能输出全局和局部学习率的改进型蝗虫视觉神经网络,进而借助混沌映射及山瞪羚优化算法设计状态更新策略,随后顺次连接此视觉神经网络及更新策略,获得能自适应调节参数的改进型蝗虫视觉进化神经网络。比较性的数值实验显示,该神经网络求解13个基准事例中7 ~ 13个事例及应用于贵州北盘江梯级电站的3种场景中至少2种场景下具有显著优势。

关键词: 梯级水电, 厂网协调, 蝗虫视觉进化神经网络, 山瞪羚优化, 以水定电

Abstract: For the short-term scheduling of cascaded hydropower stations, this paper constructs a network coordination short-term plant scheduling model to consider both peak shaving effect and power generation benefit, along with the factors of their interactive constraints. This new model is based on the water balance equation and takes the factors of unit output limitations, irregular vibration zones, and the backwater effect of tailwater as model constraints. Then, we develop an improved locust visual evolutionary neural network with adaptive parameter tuning to solve the model, through modifying the previous one by incorporating the visual residual mechanism, the half wave rectification mechanism, and local mean filtering. Further, a matrix-based state updating strategy is worked out to achieve the transition of states, resorting to the output of the visual neural network, the position updating strategy of the mountain gazelle optimization algorithm, and a chaotic mapping. Comparative numerical experiments have verified our new neural network has significant advantages in application: at least seven of thirteen benchmark examples, and at least two of three application scenes at the Beipanjiang cascade hydropower station in Guizhou.

Key words: cascaded hydropower, coordination of power plant and power grid, locust visual evolutionary neural network, mountain gazelle optimization, regulating power generation by water supply

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn