水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2024, Vol. 43 ›› Issue (2): 110-122.doi: 10.11660/slfdxb.20240211

• • 上一篇    

盐冻耦合作用下水工混凝土耐久性及寿命预测

  

  • 出版日期:2024-02-25 发布日期:2024-02-25

Durability and lifespan predictions of hydraulic concrete under salt freezing coupling effect

  • Online:2024-02-25 Published:2024-02-25

摘要: 为研究西北地区冻融盐侵环境下水工混凝土的耐久性,制备了不同粉煤灰掺量的混凝土试件,以不同浓度的硫酸钠溶液作为介质开展了冻融循环试验,阐明了不同循环次数下试件的外观、质量、抗压强度和动弹模量的变化规律,基于XGBoost模型建立了混凝土寿命预测模型并对其进行了评价和验证。研究结果表明,随着冻融循环次数增加,混凝土质量、抗压强度和动弹模量逐渐减小;冻融循环次数和硫酸钠溶液浓度是影响混凝土寿命的关键因素,8%硫酸钠溶液破坏度最高,此溶液浓度下冻融150次后混凝土质损率达4.55%;粉煤灰的掺入量对混凝土耐久性有一定影响;最优粉煤灰掺量为10%,此掺量下冻融150次后混凝土质损率为3.99%;XGBoost模型在混凝土寿命预测方面具有较高的精确性和可靠性。本研究可为混凝土结构的耐久性设计和寿命预测提供参考。

关键词: 水工混凝土, 冻融循环, 硫酸盐侵蚀, 寿命预测, 机器学习模型

Abstract: To study the durability of hydraulic concrete under the environment of freeze-thaw salt intrusion in the northwest region, we prepare concrete specimens with different fly ash dosages and conduct freeze-thaw cycling tests, using different concentrations of sodium sulfate solution as the medium. The tests clarify the specimens’ behaviors under different cycles-appearance, quality, compressive strength, and dynamic modulus of specimens. And a concrete lifespan prediction model is developed based on the XGBoost model, and it is evaluated and validated. The results indicate that as the number of freeze-thaw cycles increases, the quality, compressive strength, and dynamic modulus of concrete gradually decrease; The number of freeze-thaw cycles and the concentration of sodium sulfate solution are the key factors of concrete lifespan. The 8% solution causes the highest degree of damage, and the corresponding rate of concrete quality loss reaches 4.55% after 150 freeze-thaw cycles. The fly ash content has a certain impact on concrete durability; its optimal value is 10% and the resulted quality loss rate is 3.99% after 150 freeze-thaw cycles. The results show the XGBoost model has high accuracy and reliability in predicting concrete lifespan. This study would help the durability design and lifespan predictions of concrete structures.

Key words: hydraulic concrete, freeze-thaw cycle, sulfate erosion, lifespan prediction, machine learning model

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn