水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2024, Vol. 43 ›› Issue (1): 59-69.doi: 10.11660/slfdxb.20240106

• • 上一篇    下一篇

融合EEMD-CNN的水电机组磨碰故障声纹识别模型

  

  • 出版日期:2024-01-25 发布日期:2024-01-25

Voiceprint recognition model of hydropower unit rub-impact faults based on integrated EEMD-CNN

  • Online:2024-01-25 Published:2024-01-25

摘要: 水电机组声纹信号包含大量反映内部机械状态的有效信息,为了准确提取水电机组磨碰故障声纹特征,提出一种基于聚合经验模态分解(EEMD)与卷积神经网络(CNN)相结合的水电机组磨碰声纹识别模型。首先将水电机组噪声信号进行EEMD分解,得到若干本征模态分量(IMF)和残余分量(Res),然后将得到的IMF和Res与原噪声信号构建融合特征向量;以融合特征向量为输入,碰磨故障输出,正常和碰磨故障试验数据为样本,训练CNN深度学习神经网络,得到水电机组磨碰故障识别器,识别水电机组磨碰故障。结合水机电耦合平台和实际机组试验磨碰数据,验证了所提方法对水电机组碰磨故障识别效果,平均准确率达到99.8%,且该方法识别效果显著优于其他几种识别模型。

关键词: 水电机组, 声纹信号, 卷积神经网络, EEMD, 故障诊断

Abstract: Hydroelectric unit voice signals contain a significant amount of valuable information reflecting their internal mechanical state. To accurately extract the voiceprint features of rubbing faults in hydroelectric units, this paper presents a hydroelectric unit rubbing fault voiceprint recognition model based on the fusion of Ensemble Empirical Mode Decomposition (EEMD) and Convolutional Neural Network (CNN). First, we use EEMD to decompose a noise signal from a hydroelectric unit into several Intrinsic Mode Functions (IMFs) and a residue component (Res); we use these IMFs and Res, along with the original signal, to construct a fusion feature vector. Then, the vector is used as an input to train a CNN deep learning neural network, with the normal and rubbing fault test data as samples, so as to obtain a rubbing fault recognizer for hydroelectric units. This new method is validated against the rubbing test data from both the hydro-mechanical coupling test stand and the in-situ experiment, with an average accuracy of 99.8%, demonstrating its performance superior to other recognition models for the rubbing faults of hydroelectric units.

Key words: hydroelectric unit, voice signals, convolutional neural network, EEMD, fault diagnosis

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn