水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2024, Vol. 43 ›› Issue (1): 11-23.doi: 10.11660/slfdxb.20240102

• • 上一篇    下一篇

中国水资源利用效率及影响因素研究

  

  • 出版日期:2024-01-25 发布日期:2024-01-25

Study on water resources utilization efficiency and its influencing factors in China

  • Online:2024-01-25 Published:2024-01-25

摘要: 本文研究中国省际用水效率及影响因素,为节水型社会建设提供参考。采用改进的数据包络分析模型测算2015—2020年各地区用水效率;对比普通最小二乘回归结果,进一步利用分位数回归探究影响因素对不同等级用水效率的影响。结果显示:全国平均用水效率在0.45左右波动,呈现倒“U”型趋势。区域用水效率由高至低依次为东部、中部和西部。自然因素、经济发展水平、可持续利用水平、科技进步、人文素养和企业成本对用水效率具有显著影响。其中,水资源禀赋对低用水效率地区的影响显著,而对中、高用水效率地区的影响并不显著,这与“资源诅咒”假说不同。因此,中国用水效率还有较大提升空间,特别是低用水效率地区的改善空间和可选方法最为丰富。

关键词: 水资源利用, 影响因素, 数据包络分析模型, 普通最小二乘回归, 分位数回归

Abstract: This paper studies the efficiency and influencing factors of interprovincial water use in China, and provides reference for the construction of a water-saving society. First, an improved data envelopment model is used to calculate water use efficiency in different regions from 2015 to 2020. Then, compared with the results of ordinary least square regression, quantile regression is used to explore the influence of various factors on water use efficiency at different grades. The results show the average water use efficiency in China fluctuated around 0.45, showing an inverted "U" shaped trend. Regional water use efficiency is eastern, central and western in descending order. Water use efficiency is impacted significantly by natural factors, economic development level, sustainable use level, scientific and technological progress, human literacy, and enterprise cost. Among them, the impact of water endowment is significant on the areas with low water efficiency, while it is not significant on the areas with medium or high efficiency, which is different from the "resource curse" hypothesis. Thus, there is still much room for improvement in China's water use efficiency, especially in the low efficiency areas.

Key words: water resources utilization, influencing factors, data envelopment analysis model, ordinary least squares regression, quantile regression

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn