水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2023, Vol. 42 ›› Issue (12): 146-158.doi: 10.11660/slfdxb.20231214

• • 上一篇    下一篇

混凝土坝面交叉作业安全风险智能识别方法

  

  • 出版日期:2023-12-25 发布日期:2023-12-25

Intelligent identification method for safety risks in cross operation on concrete dam surface

  • Online:2023-12-25 Published:2023-12-25

摘要: 为快速准确识别混凝土坝面作业风险,针对坝面交叉作业复杂场景特征,基于YOLOv8网络,提出了一种混凝土坝面交叉作业安全风险智能识别方法(YOLO-CDSRI)。首先,采用跨阶段局部网络(CSPNet)和快速空间金字塔池化模块(SPPF)构建主干网络,提高模型对图像中安全风险的态势感知能力。其次,针对小目标安全风险的误识别、漏识别问题,引入双向特征金字塔网络(BiFPN),经双向跨尺度连接和加权特征融合,增强风险特征间的信息耦合,提升模型对小目标安全风险的关注度。最后,以Wise-IoU为边界框回归损失函数,结合动态非单调聚焦机制,利用“离群度”评估锚框质量,避免标注框几何因素对模型的过度影响。研究表明:经500次迭代训练,YOLO-CDSRI的综合性能优于YOLOv5s、SSD 和 Faster-RCNN模型,可为智能识别混凝土坝面交叉作业安全风险提供技术支撑。

关键词: 混凝土坝, 交叉作业, 复杂场景, 安全风险, 智能识别

Abstract: To identify the operational risk of dam construction quickly and accurately, we develop an intelligent risk identification method (YOLO-CDSRI) for the safety risks of cross operation on a concrete dam surface, based on the YOOv8 network and considering the characteristics of complex scenes of such operation. First, a backbone network is constructed using a Cross Stage Partial Network (CSPNet) module and a Spatial Pyramid Pooling-Fast (SPPF) module to enhance the model's situational awareness of safety risks shown in the construction site images. Then, to address the issues of misidentification and missed identification of small target safety risks, this method adopts the Bidirectional Feature Pyramid Network (BiFPN). And using bidirectional cross scale connections and weighted feature fusion, it strengthens information coupling between the risk features and enhances the model's attention to small target safety risks. Finally, the method evaluates the quality of the anchor box via an "outlier" to avoid the excessive influence of geometric factors of the label box on the model, by using Wise-IoU as the boundary box regression loss function and combining with the dynamic non-monotonic focusing mechanism. Results show that after 500 iterations of training, the comprehensive performance of YOLO-CDSRI is superior to YOLOv5s, SSD, and Faster-RCNN models, thus promoting intelligent identification of the safety risks in cross operation on concrete dam surfaces.

Key words: concrete dams, cross operations, complex scenarios, safety risks, intelligent identification

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn