水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2023, Vol. 42 ›› Issue (11): 146-156.doi: 10.11660/slfdxb.20231114

• • 上一篇    

高拱坝施工仿真参数ARIMA-LSTM时序概率预测方法

  

  • 出版日期:2023-11-25 发布日期:2023-11-25

ARIMA-LSTM time series probability prediction method for simulation parameters of high arch dam construction

  • Online:2023-11-25 Published:2023-11-25

摘要: 现有的高拱坝施工仿真参数更新研究多是单独进行概率预测或考虑时序特性进行点预测,难以在考虑参数的时序特征的同时对其随机性进行定量描述。针对此问题,本研究利用差分整合移动平均自回归(ARIMA)模型可进行考虑时序特征的概率预测,且长短时记忆网络(LSTM)模型可以学习参数时序复杂非线性特征的优势,提出基于ARIMA-LSTM的高拱坝施工仿真参数更新模型。该模型通过ARIMA模型进行参数时序线性部分预测,并利用LSTM模型对ARIMA模型输出的残差进行训练预测,将ARIMA模型得到的线性预测结果和LSTM模型预测得到的残差非线性结果融合,再进行95%置信区间的概率预测得到最终结果,实现高拱坝施工仿真参数在考虑参数的时序特征的同时对其随机性进行描述。通过与ARIMA、ARIMA-BP、随机森林(RF)模型进行对比,本文所提出的方法具有较高精度(MSE为0.518、MAE为0.519、RMSE为0.720),将预测得到的施工仿真参数输入到高拱坝施工系统中进行仿真计算,得到仿真结果比传统仿真精度有较大提升。

关键词: 高拱坝, 施工仿真参数, 时序概率预测, 差分整合移动平均自回归, 长短时记忆网络

Abstract: Most previous studies for updating the simulation parameters of high arch dam construction are based on probability prediction alone or point-wise prediction considering their time series characteristics; such methods are usually faced with difficulty in quantitative description of their randomness while considering their time series characteristics. To couple both factors, this study uses an Autoregressive Integrated Moving Average model (ARIMA) to predict the probability along with consideration of parameter time series characteristics, and develops a new intelligent updating model of the simulation parameters of high arch dam construction based on ARIMA and a Long Short-Term Memory model (LSTM) that can learn the advantages of complex nonlinear characteristics of parameter time series. This new model uses ARIMA to predict the linear part of the parameter time series, and uses LSTM to train and predict the residuals output by the ARIMA model. We fuse the predicted linear part and the nonlinear part of the predicted residuals, and then make probability predictions at the 95 % confidence interval to obtain the final result. Thus, we can calculate the construction simulation parameters that describe both randomness and temporal characteristics, and have achieved a new method of higher accuracy (with MSE of 0.518, MAE of 0.519 and RMSE of 0.720) than the model of ARIMA, ARIMA-BP neural network, or random forest (RF). Compared with traditional simulations, the simulation results of a high arch dam construction system are greatly improved using the simulation parameters predicted by our new method.

Key words: high arch dam, construction simulation parameter, timing probability prediction, ARIMA, LSTM

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn