水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2023, Vol. 42 ›› Issue (11): 136-145.doi: 10.11660/slfdxb.20231113

• • 上一篇    下一篇

基于奇异谱分析和改进WOA-BP的大坝变形预测模型

  

  • 出版日期:2023-11-25 发布日期:2023-11-25

Dam deformation prediction model based on singular spectrum analysis and improved whale optimization algorithm-optimized BP neural network

  • Online:2023-11-25 Published:2023-11-25

摘要: 变形是大坝安全性态的综合反映,建立其与环境量的可靠关系模型对保障大坝长效服役具有重要意义。现有预测模型易受数据集噪声和结构参数的影响,陷入局部极值或过拟合。为提高大坝变形预测的精度和泛化能力,本文提出了一种基于奇异谱分析(SSA)和改进鲸鱼优化算法(IWOA)的BP神经网络大坝变形预测方法。该方法利用SSA筛除数据噪声信息,提取大坝变形时间序列的特征分量;之后利用IWOA优化的BP神经网络挖掘去噪后数据和环境量之间的复杂非线性关系。以白莲崖拱坝为例并与传统优化算法对比分析,结果表明奇异谱分析可以有效剔除原始资料中的异常值,通过IWOA优化后BP神经网络具有更高的预测精度和稳定性,为大坝变形监测数据分析与预测提供了一种新的可行方法。

关键词: 大坝变形预测模型, 奇异谱分析, 鲸鱼优化算法, 强化寻优策略

Abstract: Deformation is a comprehensive reflection of the safety state of a dam; To ensure its long-term service, a significant task is to develop a reliable prediction model between its deformation and environmental variables. Previous models are easily affected by the noises in data sets or structural parameters, and often fall into local extremum or overfitting. To improve the accuracy and generalization ability of the model, this paper presents a back propagation (BP) neural network method based on the singular spectrum analysis (SSA) and an improved whale optimization algorithm (IWOA). The method uses SSA to filter out noises in the raw data, and extracts feature components from the dam deformation time series. Then, an IWOA-optimized BP neural network is used to explore the complicated nonlinear relationship between the denoised data and environmental variables. Practical applications to the Bailianya arch dam show that in comparison with the traditional optimization algorithm, SSA can eliminate the outliers effectively from the raw data, and the BP neural network optimized by IWOA is much better in accuracy and stability, both applicable to the analysis and prediction of dam deformation monitoring data.

Key words: dam deformation prediction model, singular spectrum analysis, whale optimization algorithm, enhanced optimization strategy

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn