水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2023, Vol. 42 ›› Issue (11): 101-113.doi: 10.11660/slfdxb.20231110

• • 上一篇    下一篇

融合多元时空信息的Informer-AD大坝变形预测模型


  

  • 出版日期:2023-11-25 发布日期:2023-11-25

Informer-AD dam deformation prediction model integrating multi-dimensional spatiotemporal information

  • Online:2023-11-25 Published:2023-11-25

摘要: 针对大坝变形时间序列预测问题,考虑多测点变形相关性,建立变形量时空多维输入矩阵,提出一种基于K-means聚类融合多元时空信息的Informer-AD大坝变形预测模型。首先,采用K-means聚类对变形测点进行分区;其次,引入面板数据回归模型分析分区结果;最后,提出融合多元时空信息的Informer-AD大坝变形预测模型。利用该模型对空间特征序列进行学习,通过全连接层整合空间特征,输出预测的大坝变形值。将上述预测模型运用于CT混凝土重力坝,结果表明,本文所提出的考虑时空关联性的预测方法充分挖掘大坝变形整体性态与测点空间分布特性的关系,能够更好地捕捉变形时空特性,进而提高预测精度。

关键词: 深度学习, 大坝变形预测, Informer-AD, 时空相关特性, K-means聚类

Abstract: For the time series prediction issue of dam deformation, a spatiotemporal multi-dimensional input matrix of deformation is derived considering the correlation of deformation at multiple measuring points; an Informer-AD dam deformation prediction model is constructed that integrates multi-dimensional spatiotemporal information based on K-means clustering. We use the K-means clustering to partition rationally the deformation measuring points, then apply a panel data regression model to integrate the analysis of spatiotemporal dimensions and partition results. Finally, we develop an Informer-AD dam deformation prediction model to integrate multi-dimensional spatiotemporal information. This model is used to learn spatial feature sequences and integrate spatial features through a fully connected layer to output predicted dam deformation values. Its application to a concrete gravity dam shows that our prediction method, considering spatiotemporal correlation, can fully explore the relationship of the overall state of dam deformation versus the spatial distribution characteristics of measuring points. It better captures the spatiotemporal characteristics of deformation values and thus improves prediction accuracy, which implies that our model has a high accuracy and satisfactory applicability, useful for engineering application.

Key words: deep learning, dam deformation prediction, Informer-AD, spatiotemporal correlation characteristics, K-means clustering

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn