水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2023, Vol. 42 ›› Issue (11): 78-91.doi: 10.11660/slfdxb.20231108

• • 上一篇    下一篇

考虑时空相关性的大坝渗压组合深度学习预测模型

  

  • 出版日期:2023-11-25 发布日期:2023-11-25

Combinatorial deep learning prediction model for dam seepage pressure considering spatiotemporal correlation

  • Online:2023-11-25 Published:2023-11-25

摘要: 针对现有大坝渗压组合预测研究大多仅基于单一测点进行建模,忽略了大坝渗压多测点测值的时空相关性,且大多采用线性组合策略,存在难以捕捉子模型间的非线性特征等问题,提出一种考虑时空相关性的大坝渗压组合深度学习预测模型。首先,采用K近邻(KNN)优化密度峰值聚类(DPC)算法的局部密度函数,以实现渗压时序时空相关特征的提取与自适应聚类;其次,在采用小波分解(WD)对渗压时序进行多尺度细化的基础上,利用小波神经网络(WNN)捕获渗压时序数据的高频细节特征,并基于双向长短期记忆网络(BiLSTM)建立渗压时序数据的低频趋势特征与时空特征、外界环境影响因子之间的高度非线性映射模型;进一步,基于长短期记忆网络(LSTM)对高、低频特征序列的预测结果进行非线性组合,以捕捉子模型之间的非线性特征。工程案例分析结果表明,相比于未考虑时空相关性的单点预测模型和采用线性组合策略的时空预测模型,所提模型的预测精度分别提高了75.7%和41.4%,验证了所提模型的有效性,为大坝渗流安全监控提供了新思路。

关键词: 大坝渗压预测, 时空相关性, 非线性组合模型, 深度学习, 密度峰值聚类

Abstract: Most of the previous studies on the combined prediction of dam seepage pressure are based on a single pressure measurement point for modeling, ignoring the spatiotemporal correlation of multiple measurement points and using a linear combination strategy which suffers problems such as difficulty in capturing nonlinear features between sub-models. This paper constructs a combinatorial deep learning prediction model for dam seepage pressure, considering spatiotemporal correlation. First, the K-nearest neighbor (KNN) is used to optimize the local density function of the density peaks clustering (DPC) algorithm, so as to extract spatiotemporal correlation features from a seepage pressure time series and to achieve adaptive clustering. Then, for the time series, on the basis of its multi-scale refinement by wavelet decomposition (WD), the wavelet neural network (WNN) is used to capture its high-frequency details and construct a highly nonlinear mapping model based on the bidirectional long short-term memory (BiLSTM) for its low-frequency trend characteristics, spatiotemporal characteristics, and external environmental impact factors. Finally, the prediction results of high- and low-frequency feature sequences are combined nonlinearly based on the long short-term memory network (LSTM) to capture the nonlinear characteristics between sub-models. An engineering case analysis shows that our new model raises the prediction accuracy by 75.7% and 41.4%, respectively, compared with the single point prediction model without considering spatiotemporal correlation and the spatiotemporal prediction model using linear combination strategy. This validates its applicability and efficacy as a new approach for dam seepage safety monitoring.

Key words: dam seepage pressure prediction, spatiotemporal correlation, nonlinear combinatorial model, deep learning, density peak clustering

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn