水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2023, Vol. 42 ›› Issue (10): 128-138.doi: 10.11660/slfdxb.20231012

• • 上一篇    下一篇

大坝渗流安全监测数据异常检测的改进DSAE模型

  

  • 出版日期:2023-10-25 发布日期:2023-10-25

Improved DSAE model for anomaly detection of dam seepage safety monitoring data

  • Online:2023-10-25 Published:2023-10-25

摘要: 针对现有大坝渗流安全监测数据异常检测方法存在检测效率和精度较低的不足,以及在异常阈值拟定过程中大多未能综合考虑监测数据随机性和模糊性的问题,提出大坝渗流安全监测数据异常检测的改进深度稀疏自编码器(deep sparse autoencoder,DSAE)模型。在以奇异谱分析方法提取监测数据残差分量的基础上,采用基于混沌初始化和非线性飞行速率改进的天鹰优化(improved Aquila optimization,IAO)算法对DSAE的超参数进行优化,建立IAO-DSAE模型,实现对监测数据残差分量的高精度重构;然后,在异常阈值的拟定过程中,将逆向云算法中的期望和熵值分别替代传统3σ法中的均值和标准差,以综合考虑监测数据的随机性和模糊性对异常阈值拟定的影响,提高异常检测结果的可靠性。工程案例研究表明,相比于基于统计模型法和3σ法的异常检测方法,根据所提方法处理后的渗流安全监测数据建立的预测模型,预测精度的平均提高幅度分别为5.56%和6.99%,验证了所提方法的有效性。

关键词: 渗流安全, 异常检测, 深度稀疏自编码器(DSAE), 逆向云, 改进天鹰优化(IAO)算法, 奇异谱分析

Abstract: Dam seepage safety monitoring suffers a drawback of low detection efficiency and low accuracy by previous abnormal detection methods, and a problem that most of them fail to consider comprehensively the randomness and fuzziness of monitoring data in formulating the abnormal threshold values. This paper presents an improved deep sparse autoencoder (DSAE) method for the anomaly detection of dam seepage safety monitoring data. This method optimizes the hyperparameters of DSAE by using the improved Aquila optimization (IAO) algorithm based on chaotic initialization and nonlinear flight rate, and extracting residual component of monitoring data by the singular spectrum analysis method. The new IAO-DSAE method so obtained can realize a high-precision reconstruction of the residual components of monitoring data. To improve the reliability of anomaly detection, we modify the process of anomaly threshold formulation by adopting the expectation and entropy of the reverse cloud algorithm in replacement of the mean and standard deviation used in the traditional 3σ method, so as to achieve a comprehensive consideration of the influence of randomness and fuzziness of monitoring data on the formulation. An engineering case study shows that compared with the anomaly detection methods based on statistical model method and 3σ method, the prediction based on the seepage safety monitoring data that are processed by our new method can raise the accuracy by 5.56% and 6.99%, respectively, verifying the applicability and effectiveness of the new method.

Key words: seepage safety, anomaly detection, deep sparse autoencoder (DSAE), reverse cloud, improved Aquila optimization (IAO) algorithm, singular spectrum analysis

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn