水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2023, Vol. 42 ›› Issue (9): 34-45.doi: 10.11660/slfdxb.20230904

• • 上一篇    下一篇

融合改进灰狼算法的机器学习月径流预测方法

  

  • 出版日期:2023-09-25 发布日期:2023-09-25

Machine learning method for monthly runoff prediction based on improved Grey Wolf algorithm

  • Online:2023-09-25 Published:2023-09-25

摘要: 为提高径流预报的准确性,对黄河唐乃亥站和兰州站实测月径流序列,分别采用梯度提升树回归(GBDT)、反向传播算法(BP)、差分进化-灰狼算法(HGWO)优化的支持向量回归(SVR)算法,结合变分模态分解方法(VMD)和极点对称模态分解方法(ESMD),建立组合预报模型。结果表明,组合模型VMD-HGWO-SVR预测效果最好,与ESMD-HGWO-SVR、VMD-BP、VMD-GBDT相比,两站的预测结果的平均绝对误差分别平均降低53.38%、14.27%、6.8%,均方根误差分别平均降低53.66%、22.0%、11.54%,平均相对误差分别平均降低54.92%、12.0%、3.67%,纳什效率系数分别平均提高17.09%、3.26%、1.36%。可以看出,该方法在月径流时间序列预测中具有较好的效果。

关键词: 变分模态分解, 月径流预测, 灰狼算法, 差分进化算法, 唐乃亥站, 兰州站

Abstract: To improve the accuracy of runoff forecast, we construct combined prediction models by integrating gradient lifting tree regression (GBDT), back propagation algorithm (BP), and with differential evolution Grey Wolf algorithm (HGWO) support vector regression (SVR) algorithm optimized using the variational mode decomposition (VMD) and the extreme-point symmetric mode decomposition (ESMD), and apply them to the monthly runoff series measured at the Tangnaihai station and Lanzhou station of the Yellow River. The results show the combined model VMD-HGWO-SVR gives the best predictions compared with other models. Its average absolute error in predicting monthly runoff at the two stations is decreased by 53.38%, 14.27% and 6.8% compared with ESMD-HGWO-SVR, VMD-BP and VMD-GBDT, respectively. On average, its root-mean-square error is decreased by 53.66%, 22.0% and 11.54%, average relative error by 54.92%, 12.0% and 3.67%; its Nash efficiency coefficient is increased by 17.09%, 3.26% and 1.36%, respectively. This verifies our new method achieves satisfactory effects in predicting monthly runoff time series.

Key words: variational mode decomposition, monthly runoff prediction, Gray Wolf algorithm, differential evolution algorithm, Tangnaihai station, Lanzhou station

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn