水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2023, Vol. 42 ›› Issue (9): 22-33.doi: 10.11660/slfdxb.20230903

• • 上一篇    下一篇

水风光多能互补系统中长期功率联合预报

  

  • 出版日期:2023-09-25 发布日期:2023-09-25

Medium and long-term joint forecast of power outputs for hydro-wind-photovoltaic complementary energy system

  • Online:2023-09-25 Published:2023-09-25

摘要: 水风光多能互补系统中水电、风电和光电通过打捆的方式并入电网。传统方法通过单独预报水电、风电和光电,然后累加得到水风光系统总功率,存在误差易累积且未考虑水风光时空互补性的问题。为提高系统功率预报精度,首先考虑时空相关性与互补性,在遥相关因子及功率等中选取预报因子;然后基于长短期记忆网络与上下限估计方法构建点预报和区间预报模型;最后实现功率的联合预报。以二滩水风光多能互补系统为实例,研究表明,在检验期,对于总功率预报,联合预报法的点预报纳什效率系数达到0.908,相较于累加预报法提高了0.016,同时区间预报的覆盖宽度综合指标也减少了0.352。提出的预报方法可为水风光互补运行提供技术支撑。

关键词: 水风光多能互补系统, 功率联合预报, 点预报, 区间预报, 长短期记忆网络, 上下限估计方法

Abstract: The outputs of hydropower, wind power and photovoltaic in a hydro-wind-photovoltaic complementary energy system (HWPCES) are integrated into the power grid. The traditional method forecasts these three outputs separately and then sums them up as the system’s total power capacity, but such a method suffers from error accumulation and lacks consideration of spatiotemporal complementarity. To improve the forecasting accuracy, first we consider spatiotemporal correlation and complementarity, and select certain predictors from the teleconnection factors and power factors. Then, a point forecasting model and an interval forecasting model are constructed based on the Long Short-term Memory network and the Lower Upper Bound Estimation method. Finally, joint forecasting of the power outputs is achieved. This study selects the Ertan HWPCES as the case study. The results show that in the verification period of total power forecasting, its Nash-Sutcliffe efficiency coefficient reaches 0.908 by the joint forecasting method, or an increase of 0.016 compared to the accumulation method. The interval forecasting method achieves a reduction of 0.352 in the coverage width-based criterion. Our new method is useful for complementary operation of hydropower, wind power, and photovoltaic.

Key words: hydro-wind-photovoltaic complementary energy system, joint forecast of power output, point forecast, interval forecast, Long Short-term Memory, Lower Upper Bound Estimation

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn