水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2023, Vol. 42 ›› Issue (8): 98-109.doi: 10.11660/slfdxb.20230811

• • 上一篇    下一篇

水利工程施工人员不安全行为识别方法

  

  • 出版日期:2023-08-25 发布日期:2023-08-25

Unsafe behavior recognition method of construction workers in water conservancy project

  • Online:2023-08-25 Published:2023-08-25

摘要: 水利工程施工过程中施工人员不安全行为是引发安全问题的关键因素,施工现场大多采用现场安全巡检、可穿戴式装备、实时监控等方法进行不安全行为识别,存在费时费力、成本高、信息化水平低等问题,不利于危险行为的及时发现、预警。针对上述问题,本文基于计算机视觉、深度学习,提出了适用于水利工程施工大场景下的不安全行为识别方法。首先,针对大场景下施工人员机械中的小目标漏检、错检问题,提出YOLOv5改进方法,并构建了施工人员机械多对象目标检测模型;其次,基于目标检测模型,分别提出了靠近静态危险区域、动态施工机械、安全帽未佩戴等常规不安全行为的识别方法;最后通过工程实例验证,本文所提出的识别方法增加了施工现场管控手段和力度,有效提升水利工程施工安全智慧化管控水平。

关键词: 水利工程, 施工人员, 不安全行为识别, 计算机视觉, 深度学习

Abstract: Unsafe behaviors of construction workers are the key factor leading to safety problems in the construction process of water conservancy project. Most construction sites adopt on-site safety inspection, wearable equipment, real-time monitoring, and other methods to identify unsafe behaviors, but such methods are time-consuming, laborious, expensive with low information level, and unfavorable to the timely discovery and early warning of dangerous behaviors. This paper presents a new method of unsafe behavior identification suitable for large scenes of water conservancy projects based on computer vision and deep learning. First, an improved method of YOLOv5 is developed to solve the problem of missing and wrong detection of small objects in construction workers and machinery in large scenes, and a multi-object object detection model of construction workers and machinery is constructed. Then, based on the target detection model, recognition methods are suggested for each of the routine unsafe behaviors, such as being close to the static danger area, dynamic construction machinery, and not wearing safety helmet, etc. Engineering application verifies that our identification method strengthens the means and intensity of construction site control and improves effectively the level of water conservancy engineering construction safety and intelligent control.

Key words: water conservancy project, construction worker, unsafe behavior identification, computer vision, deep learning

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn