水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2023, Vol. 42 ›› Issue (8): 69-79.doi: 10.11660/slfdxb.20230808

• • 上一篇    下一篇

模型水轮机初生空化的特征谱提取识别方法

  

  • 出版日期:2023-08-25 发布日期:2023-08-25

Extraction and recognition method of characteristic spectra for incipient cavitation of model turbines

  • Online:2023-08-25 Published:2023-08-25

摘要: 目前水轮机模型初生空化识别方法仍采用人工识别法,这种方法获得结果的周期较长、主观性强、准确度及效率都较低。针对于此,对水轮机模型初生空化识别方法进行了研究与优化创新,提出了一种基于炮声谱与特殊脉动谱特征提取的水轮机空化智能识别方法,即多态泡音智能识别方法PSVFR。该方法依据自主开发的水轮机空化噪声多态算法MTCSPC,对数据进行处理,通过采集初生空化音态特征向量,建立矩阵模型,与样本数据库中的定性矩阵进行特征比对、计算、判断,以帮助机器完成对模型水轮机空化噪声的学习和识别。与现有技术相比,该方法能够提高机器对水轮机初生空化现象的识别准确度和识别效率,识别效率可达80%。

关键词: 模型水轮机空化, 空化识别, 泡音智能识别, 音态特征向量, 特征谱

Abstract: At present, incipient cavitation in a model turbine is identified as before using the manual method whose shortcomings are a long period of data acquisition, strong subjectivity, low accuracy, and low efficiency. To improve incipient cavitation identification, this paper develops an intelligent identification method of turbine cavitation-namely the intelligent recognition method of multimodal bubble sound PSVFR based on feature extraction of cannon sound spectra and special pulsation spectra. In this method, turbine cavitation noise data are processed using MTCSPC, a multistate algorithm independently-developed by the authors. By collecting the feature vectors of incipient cavitation tones, a matrix model is constructed; then calculation and judgment are made through feature comparison with the qualitative matrix in the sample database, so as to help the machine complete the learning and recognition of model turbine cavitation noise. Compared with previous technologies, this method improves the accuracy and efficiency of machine identification of turbine incipient cavitation, with a recognition efficiency reaching up to 80%.

Key words: model turbine cavitation, recognition of cavitation, bubble sound intelligent recognition, sound state feature vector, characteristic spectrum

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn