水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2014, Vol. 33 ›› Issue (6): 241-247.

• 水电工程管理及其他 • 上一篇    下一篇

基于分数进制小波变换与支持向量机的短期风速预测

  

  • 出版日期:2014-12-25 发布日期:2014-12-25

Short-term wind speed forecasting based on rational-dilation wavelet transform and support vector machine

  • Online:2014-12-25 Published:2014-12-25

Abstract: A new short-term wind speed forecasting model based on rational-dilation wavelet transforms and
support vector machine (SVM) is presented. First, an idea of improving accuracy by extraction of the
oscillatory features based on wavelet transforms is discussed. Then, this paper analyzes the superiority of
rational-dilation wavelets to traditional wavelets in the power of time-frequency localization and oscillatory
feature extraction. Last, we present a construction procedure of this forecasting model. Our experimental
results show that the model has a better forecasting accuracy than all those of neural network, SVM, and the
models based on traditional wavelet transforms and SVM.

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn