水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2023, Vol. 42 ›› Issue (7): 84-95.doi: 10.11660/slfdxb.20230708

• • 上一篇    下一篇

融合社会信息的城市暴雨内涝风险评估

  

  • 出版日期:2023-07-25 发布日期:2023-07-25

Risk evaluation of urban flooding with social information

  • Online:2023-07-25 Published:2023-07-25

摘要: 针对现有城市暴雨内涝风险评估未充分考虑社会信息的问题,本文提出融合社会信息的城市暴雨内涝风险评估方法。基于城市雨洪模型获取内涝灾害自然信息,利用网络爬虫技术抓取社会信息,建立耦合自然与社会信息的城市暴雨内涝风险评估指标体系,通过指数模型综合评估研究区暴雨内涝风险。以大连市青泥寺儿沟区为实例,评估结果表明:仅考虑自然信息时,50、100年一遇暴雨对应的高风险区面积为0.53 km2、1.24 km2;考虑社会信息后,研究区暴雨内涝风险增加,高风险区面积分别为1.12 km2、1.50 km2;融合社会信息的风险评估模型会提高城市人口密集区、交通干线等重要地段的内涝风险等级,降低城市非重要地区内涝风险等级,内涝风险评估结果更合理。

关键词: 城市内涝, 城市雨洪模型, 社会信息, 暴雨内涝, 风险评估

Abstract: This paper presents a novel method for urban flooding risk assessment, incorporating social information that was not yet or less considered in previous studies. We have obtained flooding data from an urban storm water model and collected social information from webpages using the web crawler technology. Then, using these two types of information, we build an assessment index system of urban flooding and an exponential model, so as to achieve a comprehensive evaluation of urban flooding risk for the study area. Application to a study site, the Qingnishier region in Dalian, shows that for the 50- and 100-year return periods, the calculated areas of high-risk zones are 0.53 km2 and 1.24 km2, respectively, if only the flooding information is taken into account, while they become 1.12 km2 and 1.50 km2, respectively, if the social information is also included, revealing considerable increases in the latter case. Incorporating social information in the model will significantly raise the flooding risk level in strategic locations such as densely populated urban areas, traffic arteries, but it will lower the risk level in those unimportant areas, which indicates an improvement of the modeling.

Key words: urban flooding, urban storm water model, social information, storm rainfall and flooding, risk assessment

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn