|
||
水力发电学报 ›› 2023, Vol. 42 ›› Issue (5): 107-119.doi: 10.11660/slfdxb.20230512
摘要: 土石坝渗流监控模型是定量分析土石坝渗流安全的重要方法。传统土石坝渗流监控模型常独立采用统计模型或机器学习智能算法模型,未有效融合两者的优点。本文在集成学习的框架下,创新地将统计模型和多种并行的智能算法预测模型进行融合,利用统计模型的可解释性和智能算法的高拟合性进而提升集成模型预测精度。首先针对土石坝渗流统计模型,在经典土石坝渗流统计模型基础上充分考虑渗流影响因子的滞后效应,改进水位分量和降雨分量影响因子表达式。然后,基于贝叶斯差分自适应Metropolis(differential evolution adaptive Metropolis,DREAMZS)集成理论,将机器学习中多个先进智能算法和改进的统计模型进行集成,并获得各模型的最优权重系数。实例分析表明,集成学习融合模型相较于单一统计模型或智能算法模型预测精度有明显的提升,有效融合了统计模型和多种智能模型的预测优势,为土石坝渗流监控模型的建立提供了一种新的建模方法。
京ICP备13015787号-3 版权所有 © 2013《水力发电学报》编辑部 编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |