水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2023, Vol. 42 ›› Issue (4): 126-136.doi: 10.11660/slfdxb.20230412

• • 上一篇    

NGO-GPR与投影寻踪联合驱动的大坝变形预测模型

  

  • 出版日期:2023-04-25 发布日期:2023-04-18

Prediction model of dam deformation driven by NGO-GPR and projection pursuit

  • Online:2023-04-25 Published:2023-04-18

摘要: 建立准确可靠的变形预测模型对保证大坝安全运行至关重要,然而现有监控模型难以兼顾海量监测数据的多维度时空关联特性,不能有效反映大坝整体和区域性变形性态。为此,引入考虑测点综合距离的层次凝聚聚类和投影寻踪法,深入挖掘坝体位移场海量监测数据中的关联信息,得到反映分区多测点变形特征的融合变形序列;提出一种由北方苍鹰算法优化的高斯过程回归,以此建立分区多测点融合变形预测模型,并依据拉依达准则构建预测结果的置信区间。结合工程实例,探究了不同核函数对模型预测精度的影响;通过对比分析,验证了本文方法对比几种常规模型具有更高预测精度和适用性,且能对预测结果的可靠程度进行估计,对大坝变形性态的安全监测具有一定工程应用价值。

关键词: 大坝变形预测, 聚类分区, 投影寻踪法, 北方苍鹰优化算法, 高斯过程回归

Abstract: An accurate and reliable deformation prediction model is essential to ensure the safe operation of water dams. However, previous monitoring models lack consideration of the multidimensional spatial or temporal correlation characteristics of massive monitoring data, and fail to effectively reflect the overall or regional deformation patterns of a water dam. This paper adopts a hierarchical agglomerative clustering and projection pursuit method to take into account the integrated distances of measuring points, and deeply explores correlation information in the massive monitoring data of a dam displacement field. A fused deformation sequence reflecting the deformation characteristics of multi-measuring points in the partition is obtained. We develop a new Gaussian process regression optimized by the northern goshawk algorithm to construct a fused deformation prediction model for multi-measuring points in a partition, and construct a confidence interval of the prediction results by the Lajda criterion. The influence of different kernel functions on the model prediction accuracy is examined through an engineering example. A comparative analysis verifies that our method is more accurate and applicable than the conventional models and can achieve a reliability estimation of the prediction results. It is a useful tool for the safety monitoring of dam deformation. Keywords: dam deformation prediction; clustering partition; projection pursuit method; northern goshawk optimization; Gaussian process regression

Key words: dam deformation prediction, clustering partition, projection pursuit method, northern goshawk optimization, Gaussian process regression

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn