水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2023, Vol. 42 ›› Issue (4): 114-125.doi: 10.11660/slfdxb.20230411

• • 上一篇    下一篇

面向质量检测的混凝土坝施工规范智能检索

  

  • 出版日期:2023-04-25 发布日期:2023-04-25

Intelligent retrieval of concrete dam construction specifications for quality inspection

  • Online:2023-04-25 Published:2023-04-25

摘要: 管控混凝土坝施工质量需要准确定位规范条文以获取规范知识,依靠管理人员经验手动查找规范条文低效且易出错,本文采用自然语言处理技术,结合质量管理文本特征,从句子语义角度出发克服仅考虑关键词查询的不足,提出一种由语义推断驱动的施工规范深度检索方法。该方法结合Bi-GRU结构与Transformer机制,改进基于MLP的双塔模型,并耦合基于统计的BM25模型,实现了对施工规范的智能检索,通过语义分析对质量检测项目是否响应规范进行了评价。实例工程应用结果表明,耦合模型召回的前三条规范条文精确度达到82.31%,明显优于普通检索方法,验证了所提方法的工程适用性;最后开发了相应的工具为推进混凝土坝施工质量合规性检测智能化提供了操作平台。

关键词: 规范知识检索, 自然语言处理, 混凝土坝施工, 语义匹配, 质量控制

Abstract: To control the construction quality of concrete dams, it is necessary to accurately find normative clauses to obtain normative knowledge. Manual finding of these clauses based on the managers’ experiences is inefficient and error-prone. This paper adopts Natural Language Processing technology, from the perspective of sentence semantics, to overcome the shortcoming of considering keyword queries only, and develops a deep retrieval method of construction norms driven by semantic inference. This method combines Bi-GRU and the Transformer structure to improve a MLP-based twin-tower model, and couples it with a BM25 model to realize the intelligent retrieval of the norms; through semantic analysis, it evaluates whether or not the quality inspection project is aligned with the norms. Application to an actual project shows that the accuracy of the first three normative clauses recalled by our coupled method reaches 82.3%, higher than that of the common retrieval method, verifying its engineering applicability. In addition, we have developed a tool to provide an operation platform for promoting intelligent checking of the quality compliance of concrete dam construction.

Key words: norm knowledge retrieval, Natural Language Processing, concrete dam construction, semantic matching, quality control

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn