水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2023, Vol. 42 ›› Issue (4): 1-10.doi: 10.11660/slfdxb.20230401

• •    下一篇

编辑部推荐论文:三峡入库洪水概率预报的深度学习模型

  

  • 出版日期:2023-04-25 发布日期:2023-04-25

Deep learning model for probability forecasting of flood to Three Gorges Reservoir

  • Online:2023-04-25 Published:2023-04-25

摘要: 将长短时记忆(LSTM)神经网络嵌套至编码-解码(ED)结构,构建了LSTM-ED深度学习模型,采用贝叶斯概率预报处理器量化洪水预报不确定性,提出了一种三峡入库洪水概率预报业务方法,并讨论了降雨预报对洪水概率预报性能的影响。选用向家坝—三峡坝址区间流域2010—2021年汛期6 h降水径流资料序列训练和检验模型,开展了1 ~ 7 d预见期入库洪水预报。结果表明:LSTM-ED模型的模拟预报精度优于LSTM模型,验证期1 ~ 7 d预见期纳什效率系数高于0.92;概率预报连续排位概率分数相对平均绝对误差降低26.82% ~ 32.74%,考虑预报降雨可进一步提高概率预报性能,为调度决策者提供可靠的风险信息。

关键词: 洪水预报, 深度学习, 编码-解码结构, 概率预报, 不确定性分析

Abstract: Through embedding a long short-term memory (LSTM) neural network in the encoder-decoder (ED) structure, this study constructs a LSTM-ED deep learning model and uses the Bayesian probabilistic forecasting processor to quantify flood forecast uncertainty. A probabilistic operational approach is developed, and the influence of rainfall forecast information on the probabilistic forecast performance is discussed. The new models are trained and validated using 6h rainfall and runoff series during 2010-2021 flood seasons in the interval basin between the Xiangjiaba reservoir and Three Gorges reservoir to forecast its floods for the forecast periods of 1 - 7 d. The results show the LSTM-ED model has a forecast accuracy higher than that of LSTM, achieving the Nash efficiency coefficients above 0.92 for the validation of 1 – 7 d forecast periods. The continuous ranking probability score values of the probabilistic forecasts are reduced by 26.8% - 32.7% relative to the mean absolute errors, effectively quantifying forecast uncertainties. The probabilistic forecasts could be further improved by considering rainfall forecast information so as to provide more reliable risk information for decision-making of reservoir scheduling.

Key words: flood forecast, deep learning, encoder-decoder structure, probabilistic forecasting, uncertainty analysis

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn