水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2014, Vol. 33 ›› Issue (6): 187-191.

• 水工、水电站结构与岩土工程 • 上一篇    下一篇

基于FOA-GRNN的水电站厂房结构振动响应研究

  

  • 出版日期:2014-12-25 发布日期:2014-12-25

Study on vibration responses of powerhouse structures based on FOA-GRNN

  • Online:2014-12-25 Published:2014-12-25

Abstract: A flies optimization algorithm (FOA) is used to optimize the spread value of generalized
regression neural network (GRNN). This method takes advantages of FOA in fast convergence and GRNN
in few parameters, and is compared with neural network prediction models (BP and ELMAN) for a
comparative study on prediction features of the vibration responses of overflow structure on the roof of a
hydropower station dam. The comparison of three models concludes that the GRNN based on FOA has both
prediction ability and learning speed superior to BP or ELMAN. It also shows the feasibility of FOA-GRNN
in vibration predictions that enhances intelligence in monitoring hydraulic structure.

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn