水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2023, Vol. 42 ›› Issue (3): 103-117.doi: 10.11660/slfdxb.20230310

• • 上一篇    下一篇

液化场地水平位移预测数据驱动方法研究

  

  • 出版日期:2023-03-25 发布日期:2023-03-25

Study of data-driven methods for predicting soil liquefaction-induced lateral displacement

  • Online:2023-03-25 Published:2023-03-25

摘要: 基于Youd等2002液化变形数据库,结合机器学习方法,本研究建立了基于机器学习的液化场地水平位移预测数据驱动方法,并利用其对新近地震液化场地的水平位移进行了预测。首先,收集了新近几次地震液化场地水平位移案例,在此基础上采用已有常用工程经验方法对新近地震液化场地水平位移进行预测以探究其适用性,发现Youd 2018方法具有良好的表现。为获得最优的机器学习模型,本研究分别讨论了BP神经网络模型(BPNN)、径向基神经网络模型(RBF)、决策树模型(DT)、随机森林模型(RF)、支持向量机模型(SVM)等机器学习模型的适用性。研究发现,随机森林模型(RF)表现优越,该方法计算效率高、数据可扩展性好,同时能够很好地反映已有数据特性。相较于Youd 2018方法,随机森林模型(RF)对新近地震液化场地水平位移的整体预测精度提升18.17%。最后,本研究探讨了随机森林模型(RF)预测液化场地水平位移时不同影响因素的敏感性。

关键词: 砂土液化, 水平位移, 数据驱动, 机器学习, 敏感性分析

Abstract: A machine learning-based method is developed based on the liquefaction-induced lateral displacement database of Youd et al., 2002, and applied to the simulation of some soil displacement cases in recent earthquakes. We collect the histories of these cases, and then predict them using the existing engineering experience methods to explore the applicability of the model, showing the Youd 2018 method has a good performance. To obtain an optimal machine learning model, this paper discusses the applicability of five models-BP neural network (BPNN), radial basis neural network (RBF), decision tree (DT), random forest (RF), and support vector machine (SVM). We find that the performance of RF is superior to the other machine learning methods. It has high computational efficiency and good data scalability, and can well reflect the characteristics of the data available to this study. Its prediction accuracy is increased by 18.17% relative to the Youd 2018 method. In addition, a sensitivity analysis is carried out of the influencing factors of liquefaction-induced lateral deformation simulation using the RF model.

Key words: soil liquefaction, lateral displacement, data-driven, machine learning, sensitivity analysis

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn