|
||
水力发电学报 ›› 2023, Vol. 42 ›› Issue (3): 103-117.doi: 10.11660/slfdxb.20230310
摘要: 基于Youd等2002液化变形数据库,结合机器学习方法,本研究建立了基于机器学习的液化场地水平位移预测数据驱动方法,并利用其对新近地震液化场地的水平位移进行了预测。首先,收集了新近几次地震液化场地水平位移案例,在此基础上采用已有常用工程经验方法对新近地震液化场地水平位移进行预测以探究其适用性,发现Youd 2018方法具有良好的表现。为获得最优的机器学习模型,本研究分别讨论了BP神经网络模型(BPNN)、径向基神经网络模型(RBF)、决策树模型(DT)、随机森林模型(RF)、支持向量机模型(SVM)等机器学习模型的适用性。研究发现,随机森林模型(RF)表现优越,该方法计算效率高、数据可扩展性好,同时能够很好地反映已有数据特性。相较于Youd 2018方法,随机森林模型(RF)对新近地震液化场地水平位移的整体预测精度提升18.17%。最后,本研究探讨了随机森林模型(RF)预测液化场地水平位移时不同影响因素的敏感性。
京ICP备13015787号-3 版权所有 © 2013《水力发电学报》编辑部 编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |