水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2023, Vol. 42 ›› Issue (3): 70-81.doi: 10.11660/slfdxb.20230307

• • 上一篇    下一篇

基于卷积径向基网络的多变量水位预测模型

  

  • 出版日期:2023-03-25 发布日期:2023-03-25

Multivariable water level prediction model based on convolution radial basis network

  • Online:2023-03-25 Published:2023-03-25

摘要: 实现河流水位的准确预测对于流域水资源的精准调度与管理具有重要意义。由于水文数据的复杂多变与非线性相关特性,传统机器学习模型的预测精度难以进一步提高。本文提出了一种基于卷积径向基网络的多变量水位预测模型,该模型先通过多层二维卷积网络对水文变量的时空特征进行并行化地充分提取,然后利用径向基网络实现河流水位的高精度预测。针对四川省清溪河流域开展了模型的相关实验研究,结果表明:与四种经典模型相比,其均方根误差最少降低了0.0387,纳什效率系数最少增加了0.0557;与现有的自回归循环网络模型相比,在相同输入特征条件下其最大误差和均方根误差分别降低了0.3482和0.0165,验证了该模型在流域水位预测中具有良好的适用性和有效性。

关键词: 水位预测, 多变量序列, 卷积网络, 径向基函数, 特征提取, 相关性分析

Abstract: Accurate prediction of river water levels is of great significance for a high-quality dispatching and management of the water resources in the basin, but the prediction accuracy of a traditional machine learning model is usually difficult to improve further due to the complexity and nonlinear correlation of hydrological data. This paper develops a more accurat4e model of multivariable water level prediction based on a convolution radial basis network. It extracts the spatiotemporal features of hydrological variables fully in parallel, using a multi-layer two-dimensional convolution network; then it achieves high-accuracy predictions of river water levels through a radial basis function network. To verify this model, a numerical experiment is carried out focusing on the predictions of the Qingxi River basin in Sichuan. The results show that compared with four classical models, its root-mean-square error is reduced by 0.039 at least, and the Nash efficiency coefficient increased by 0.056 at least. Compared with the AR-RNN model with the same inputs, its maximum error and root-mean-square error are reduced by 0.348 and 0.017 respectively, verifying its good applicability and effectiveness in basin water level predictions.

Key words: water level prediction, multivariable sequence, convolution network, radial basis function, feature extraction, correlation analysis

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn