水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2023, Vol. 42 ›› Issue (1): 40-51.doi: 10.11660/slfdxb.20230105

• • 上一篇    下一篇

基于并行机器学习的风功率超短期预测

  

  • 出版日期:2023-01-25 发布日期:2023-01-25

Ultra-short-term predictions of wind power based on parallel machine learning

  • Online:2023-01-25 Published:2023-01-25

摘要: 针对风功率存在间歇性、随机性和波动性的特征及组合预测模型耗时长的问题,提出一种并行解决方案,建立集合经验模态分解(EEMD)与双向长短期记忆(BiLSTM)神经网络相结合的风功率并行组合预测模型。首先,利用EEMD将原始风功率序列分解为一系列本征模态函数;其次,借助多进程信息传递接口为本征模态函数构建并行BiLSTM神经网络子模型阵列,并采用贝叶斯优化算法率定各子模型超参数;最后,将并行子模型预测序列合成后便得到风功率预测结果。实例验证表明,所建模型在单步预测、多步预测和执行效率方面较五组对照模型均具备一定的优势。研究成果可为电网发电计划的制定及电力系统经济运行提供数据支撑和参考价值。

关键词: 集合经验模态分解, 双向长短期记忆, 并行计算, 贝叶斯优化, 组合模型

Abstract: In view of the intermittent, random and fluctuating characteristics of wind power output and the time-consuming drawback of its previous combined forecasting models, a combined wind power prediction model is developed based on a combination of the parallel technology, ensemble empirical mode decomposition (EEMD), and bidirectional long short-term memory (BiLSTM) neural networks. First, the initial sequence of wind power output is decomposed into a series of intrinsic mode functions using EEMD. Then, a parallel BiLSTM neural networks sub-model array for the intrinsic mode functions is constructed with the help of the multi-process message passing interface, and a Bayesian optimization algorithm is used to calibrate the hyperparameters of each sub-model. Finally, wind power predictions are obtained by synthesizing the parallel sub-model prediction sequences. Example verification shows that this prediction model has certain advantages over the five models compared in terms of one-step prediction, multi-step prediction, and execution efficiency. The results are useful for the formulation of power grid generation plans and the economic operation of power systems.

Key words: ensemble empirical mode decomposition, bidirectional long short-term memory, parallel computing, Bayesian optimization, combination model

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn