|
||
水力发电学报 ›› 2023, Vol. 42 ›› Issue (1): 40-51.doi: 10.11660/slfdxb.20230105
摘要: 针对风功率存在间歇性、随机性和波动性的特征及组合预测模型耗时长的问题,提出一种并行解决方案,建立集合经验模态分解(EEMD)与双向长短期记忆(BiLSTM)神经网络相结合的风功率并行组合预测模型。首先,利用EEMD将原始风功率序列分解为一系列本征模态函数;其次,借助多进程信息传递接口为本征模态函数构建并行BiLSTM神经网络子模型阵列,并采用贝叶斯优化算法率定各子模型超参数;最后,将并行子模型预测序列合成后便得到风功率预测结果。实例验证表明,所建模型在单步预测、多步预测和执行效率方面较五组对照模型均具备一定的优势。研究成果可为电网发电计划的制定及电力系统经济运行提供数据支撑和参考价值。
京ICP备13015787号-3 版权所有 © 2013《水力发电学报》编辑部 编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |