水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2022, Vol. 41 ›› Issue (12): 27-37.doi: 10.11660/slfdxb.20221204

• • 上一篇    下一篇

动态扰动下高心墙堆石坝无人碾压BOA-PID循迹控制

  

  • 出版日期:2022-12-25 发布日期:2022-12-25

BOA-PID tracking control of unmanned roller for high core rockfill dam compaction under dynamic disturbance

  • Online:2022-12-25 Published:2022-12-25

摘要: 无人碾压机精准循迹控制对确保压实质量意义重大。然而,高心墙堆石坝具有坝料粒径分布广且松铺厚度不均匀等特征,导致坝面不平整且异质性强,对无人碾压机循迹控制造成动态扰动。传统的比例积分微分(proportion integral derivative,PID)控制算法采用固定参数进行纠偏控制,难以快速纠正动态扰动导致的循迹偏差。针对上述问题,本文以蝴蝶优化算法(butterfly optimization algorithm, BOA)动态优化PID控制参数,提出BOA-PID无人碾压机循迹控制方法。首先,构建车身倾斜模型以修正坝面不平整条件下无人碾压机的定位误差;其次,基于运动学模型动态预测无人碾压机的纠偏距离;再者,以最小化纠偏距离为目标函数,采用BOA动态优化PID算法的比例、积分和微分参数;最后,以参数优化的PID计算无人碾压机的转向控制量,从而克服动态扰动,实现高心墙堆石坝复杂条件下的快速纠偏。本文结合中国西南两河口大型水利水电工程开展仿真与实地实验,以验证所提出方法的有效性和先进性。结果表明,BOA-PID的纠偏能力优于GA-PID(genetic algorithm)、PSO-PID(particle swarm optimization)、DA-PID(dragonfly algorithm)和传统PID,且所提出方法能够实现高心墙堆石坝复杂条件下无人碾压机的精准循迹控制,堆石料(4.44 cm)和心墙料(3.32 cm)碾压的平均循迹误差均小于5 cm。

关键词: 高心墙堆石坝, 无人碾压机, 循迹控制, 动态扰动, BOA, PID控制

Abstract: Accurate tracking control of an unmanned roller is of great significance to ensuring compaction quality. However, high-core rockfill dams feature a wide range of the particle size of dam materials, an uneven thickness of the paving layer, and a great heterogeneity of the roller working surface; all these factors lead to large dynamic disturbances to roller control. The traditional proportional-integral-derivative (PID) control algorithm uses fixed parameters for deviation correction, and confronts difficulties in timely correction of the tracking deviation caused by dynamic disturbances. Aimed at this issue, this paper uses the butterfly optimization algorithm (BOA) to dynamically optimize the PID control parameters and develops a BOA-PID unmanned roller tracking control method. A body tilt model is constructed to correct the positioning error of the roller under the condition of an uneven working surface; the correction distance is dynamically predicted based on a kinematic model. Then, by taking the minimized correction distance as the goal function, PID is dynamically optimized by BOA including its proportional, integral and differential parameters. Finally, a steering control value for the roller is calculated using the optimized PID, so as to overcome the dynamic disturbance under the complex condition of high-core rockfill dams. This paper gives a case study of the Lianghekou Dam-a large-scale water conservancy and hydropower project in Southwest China-where we have conducted field experiments to verify the effectiveness of this BOA-PID control method. Results show that its correction capability is better than that of GA-PID (genetic algorithm), PSO-PID (particle swarm optimization), DA-PID (dragonfly algorithm), or traditional PID. And it can realize an accurate tracking control of the unmanned roller under the complex condition of high-core wall rockfill dam construction, and reduce the average tracking error of the rockfill material (4.44 cm) and the core wall material (3.32 cm) to a level below 5 cm.

Key words: high core rockfill dam, unmanned roller compactor, tracking control, dynamic disturbance, butterfly optimization algorithm (BOA), proportional-integral-derivative (PID) control

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn