水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2022, Vol. 41 ›› Issue (11): 124-138.doi: 10.11660/slfdxb.20221113

• • 上一篇    下一篇

融合时变因素的浆砌石坝变形时空混合模型

  

  • 出版日期:2022-11-25 发布日期:2022-11-25

Spatiotemporal hybrid model for deformation of mortar masonry dams with time-varying factor

  • Online:2022-11-25 Published:2022-11-25

摘要: 混合模型常被用于大坝变形的整体预测,目前开展的研究主要针对混凝土坝,对于同样数量多且分布广的浆砌石这类非线性材料坝的研究还较少。本文考虑非线性材料坝变形具有的时变特性,通过引入时间量参数及观测点相对坐标,建立对应的水压分量多点统计模型。考虑到引入多参数的水压分量模型系数寻优困难问题,采用改良的粒子群算法(IPSO)加强粒子随机性及交互性,提高模型系数的寻优速度。采用有限元方法(FEM)与卡尔曼滤波(KF)对其进行预测,建立FEMK模型。同时,采用深度学习算法LSTM训练经PCA降维后的温度和时效因子并预测相应变形值。联合构建的FEMK-LSTM-PCA时空混合模型经工程实例验证有较高预测精度,并且可以实现对大坝变形的整体预测。

关键词: 浆砌石坝, 时变因素, 多点预测, 混合模型, 深度学习

Abstract: Hybrid models are often used to predict the overall deformation of dams. However, most previous studies have focused on concrete dams, lacking an effort into the widespread masonry dams. This paper considers the time-dependent characteristics of nonlinear dam material, and constructs a corresponding multi-point statistical model of the hydrostatic component by introducing a time parameter and the relative coordinates for the observation points. Generally, difficulties exist in optimizing the coefficients of a hydrostatic component model if it is equipped with multiple parameters; thus, we proposed an improved particle swarm optimization (IPSO) algorithm to enhance the particle randomness and interactivity and accelerate the search for optimal model coefficients. By combining finite element method (FEM) and a Kalman filter (KF), a FEMK model is constructed and used for predictions. And a deep learning algorithm LSTM model is used to train the temperature and aging factors after PCA dimensionality reduction and to predict the corresponding deformation. The resultant model, namely the spatiotemporal hybrid model FEMK-LSTM-PCA jointly constructed by these two models, has a high accuracy in the overall prediction of dam deformation, which is verified by its application to engineering examples.

Key words: mortar masonry dam, time-dependent factor, multipoint prediction, hybrid model, deep learning

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn