水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2022, Vol. 41 ›› Issue (9): 67-76.doi: 10.11660/slfdxb.20220907

• • 上一篇    下一篇

基于动态临界雨量的小流域山洪灾害分级预警

  

  • 出版日期:2022-09-25 发布日期:2022-09-25

Flash flood grading and warning based on dynamic rainfall thresholds

  • Online:2022-09-25 Published:2022-09-25

摘要: 临界雨量方法在山洪灾害预报预警中应用广泛,然而传统的临界雨量方法以静态临界雨量为主,且无法判别山洪灾害的风险等级。本文发展了基于动态临界雨量方法的山洪灾害分级预警方法,并在福建闽江下游小流域进行应用。方法采用人工神经网络构建成灾流量与风险因子间的统计关系,进而获得无资料地区成灾流量的空间分布,并根据历史重现期划分不同山洪风险等级,得到对应风险等级的临界流量和临界雨量。结果表明:通过考虑流域前期湿润状况,该方法能够显著延长山洪灾害预警的预见期,有效提升对山洪灾害的监测预报能力。此外,相比于传统山洪预警方法,山洪风险等级的划分使得该方法更适用于山洪灾害风险预警的业务应用。

关键词: 山洪预警, 动态临界雨量, 山洪风险等级, 小流域

Abstract: The rainfall threshold method is widely used in flash flood warning and forecasting, but its traditional applications usually rely on static indexes and fail to identify disaster risk levels. In this study, a grading warning method is developed based on dynamic rainfall thresholds and applied to a small watershed in the downstream of the Minjiang River in Fujian Province. It uses an artificial neural network to construct a statistical relationship between runoff thresholds and risk factors to obtain the spatial distribution of runoff thresholds in the ungauged areas. By defining four risk levels of flash floods, it determines the corresponding runoff thresholds and rainfall thresholds through a frequency analysis based on long-term hydrological simulations. Results show that by considering the effect of antecedent soil moisture on flash floods, this method can prolong the forecast period and improve the monitoring capability significantly. Compared with traditional methods, its adoption of flash flood risk levels enhances its applicability to real flash flood warning.

Key words: flash flood warning, dynamic rainfall threshold, flash flood risk level, small watershed

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn