水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2014, Vol. 33 ›› Issue (6): 61-67.

• 水文水资源、水电规划及动能经济 • 上一篇    下一篇

基于正态云变异蛙跳算法的梯级水电站短期优化调度

  

  • 出版日期:2014-12-25 发布日期:2014-12-25

Optimization of short-term operation of cascade hydropower stations using normal cloud mutation shuffled frog leaping algorithm

  • Online:2014-12-25 Published:2014-12-25

Abstract: To improve the premature convergence problem of traditional shuffled frog leaping algorithm
(SFLA), normal cloud mutation operation is used to optimize the solution of each group by the cloud
model’s characteristics of uncertainty with certainty, stability, and flexibility in knowledge expression, and
the beat step size is adjusted for local depth search. Using this technique, we have developed a normal cloud
mutation-shuffled frog leaping algorithm (NCM-SFLA) that can avoid easy trapping into local optimum in
calculation of evolution. This new algorithm was applied to short-term optimal dispatch of cascade
hydropower stations. Application in a case study shows that it has better global search ability and faster
convergence speed than those of DPSA, SFLA or PSO and it is effective in solution of short-term optimal
operation of cascade hydropower stations.

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn