水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2022, Vol. 41 ›› Issue (8): 92-103.doi: 10.11660/slfdxb.20220809

• • 上一篇    下一篇

砾石土心墙摊铺CA-BINN动态路径规划模型研究

  

  • 出版日期:2022-08-25 发布日期:2022-08-25

Study on CA-BINN dynamic path planning model for gravel soil core paving

  • Online:2022-08-25 Published:2022-08-25

摘要: 现有砾石土心墙摊铺作业路径多采用静态规划,未能考虑推土机、自卸汽车等复杂作业环境障碍物的动态变化。针对上述问题,本文提出了一种考虑复杂动态作业环境的砾石土心墙摊铺CA-BINN动态路径规划模型。该模型基于元胞自动机(cellular automata,CA)建模理论,将实时感知的复杂作业环境数据抽象为动态障碍物、摊铺厚度等元胞状态以实时重构动态施工环境;并以元胞状态信息作为生物激励神经网络(biological inspired neural network,BINN)算法的外部输入,同时重构CA框架下BINN算法的神经活性值计算分流方程,实现多料堆整体摊铺作业动态路径规划。其中,单料堆摊铺作业采用以摊铺平整度、无效路径比等指标为目标函数,并结合现场三刀法(三次推移料堆)施工工艺提出的三刀法CA规则实现动态路径规划。工程应用结果表明:所提模型不仅能够在复杂动态作业环境下表现出高安全性、高适应性,而且相较于静态规划模型,路径长度、转折次数和无效路径比分别降低1.9%、42.9%和48%,摊铺平整度提高7%;相较于人工作业,摊铺平整度提高28%,无效路径比降低47%,有效改善了摊铺质量和摊铺效率。

关键词: 砾石土心墙摊铺, 复杂动态作业环境, 元胞自动机, 生物激励神经网络(BINN), 动态路径规划

Abstract: The existing operation path of gravel soil core paving mostly adopts static planning, which fails to consider dynamic changes of the obstacles in a complex operation environment such as bulldozers and dump trucks. To take this case into account, we develop a CA-BINN dynamic path planning model for gravel soil core paving in this paper. Based on the cellular automata (CA) modeling theory, this new model abstracts cellular state information-e.g. dynamic obstacles and paving thickness-from the real-time perceived complex working environment data, and conducts real-time reconstruction of a dynamic construction environment. It inputs this external information into a biological inspired neural network (BINN) algorithm, and reconstructs its neural activity value under the CA framework for calculation of the diversion equation, achieving the dynamic path planning of multi-pile overall paving operation. In this procedure, the paving operation of single material piles takes the indexes-e.g. paving integrity and invalid path ratio-as the objective functions, and dynamic path planning is realized using the three knife CA rule we formulated in the on-site three knife (three times moving material pile) construction. Engineering application shows that our new model not just has high safety and adaptability to complex dynamic operation environments, but can reduce path length, turning times and invalid path ratio by 1.9%, 42.9% and 48% respectively, and improve the paving smoothness by 7% against the static planning model. Compared with manual operation, it increases paving smoothness by 28% and reduces invalid path ratio by 47%, thus improving paving quality and efficiency significantly.

Key words: gravel soil core paving, complex dynamic operation environment, cellular automata, biological inspired neural network (BINN), dynamic path planning

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn