水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2022, Vol. 41 ›› Issue (8): 77-91.doi: 10.11660/slfdxb.20220808

• • 上一篇    下一篇

滦河流域遥感降水降尺度多时间特性分析

  

  • 出版日期:2022-08-25 发布日期:2022-08-25

Multi-temporal characterization analysis of remotely sensed precipitation downscaling in the Luanhe River Basin, China

  • Online:2022-08-25 Published:2022-08-25

摘要: 为提高卫星降水产品空间分辨率以满足精细水文研究需要,以滦河流域为研究对象,针对在中国区域精度较高的全球降水观测计划多卫星降水产品(IMERG),使用NDVI、DEM、坡度、坡向、经纬度和降水关系,构建了一种基于卷积神经网络的降水降尺度模型,探讨了模型在年、季、月和旬的表现及模型参数的变化情况。结果表明:降尺度结果与原始数据相比,年、季、月降尺度结果的相似指数分别超过0.94、0.89和0.69,旬尺度也能有效表征降水情况;与中国日降水站点分析产品(CGDPA)相比,年、季、月和旬降尺度结果的平均相似指数分别为0.58、0.78、0.68、0.47;模型参数的相似度会随着模型层数的深入逐渐增大。证明该模型具有良好的收敛性,在流域范围的降尺度应用方面具有良好的潜力。

关键词: 多卫星降水产品, 中国日降水站点分析产品, 卷积神经网络, 滦河流域, 统计降尺度

Abstract: To improve the spatial resolution of satellite precipitation products to meet the need for fine hydrological research, a convolutional neural network-based precipitation downscaling model is developed. It adopts the relationships of precipitation versus NDVI, DEM, slope, slope direction, latitude, and longitude from the Global Precipitation Observation Program multi-satellite precipitation product (IMERG) of better accuracy for regions in China. We also examine its overall performance and variations in its parameters for different timescales of a year, season, month, and ten-day. Results show that agreement indices of annual, seasonal and monthly downscaled results exceed 0.94, 0.89, and 0.69 respectively in comparison with original data; the model can also characterize precipitation at the ten-day scale. Compared with China Gauge-Based Daily Precipitation Analysis (CGDPA) data, the average agreement indices of annual, seasonal, monthly and ten-day downscaled results are 0.58, 0.78, 0.68, and 0.47 respectively; the similarity of model parameters increases gradually with the depth of the model layers. This study shows that this deep learning model has good convergence and good potential for basin-wide downscaling applications.

Key words: IMERG, CGDPA, convolutional neural networks, Luanhe River basin, statistic downscaling

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn