水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2022, Vol. 41 ›› Issue (7): 72-84.doi: 10.11660/slfdxb.20220708

• • 上一篇    下一篇

基于时间注意力机制的大坝动态变形预测模型

  

  • 出版日期:2022-07-25 发布日期:2022-07-25

Prediction model of dam structure dynamic deformation based on time attention mechanism

  • Online:2022-07-25 Published:2022-07-25

摘要: 构建高精度的变形预测模型对于大坝风险评估及防治措施制定具有极其重要的意义。传统的大坝变形预测模型鲜有针对大坝的变形滞后性特点以及变形特征因子的影响性分析与评估,这会对模型的预测精度造成较大的影响,并导致模型缺乏可解释性。针对上述问题,本文提出一种结合时间注意力机制的门控循环单元神经网络(GRU)架构。首先通过卡尔曼滤波(Kalman Filter)对原始大坝变形数据中由于监测器异常导致的随机噪声与异常值进行处理。其次,利用随机森林(RF)对各变形特征因子的重要性进行分析和评估,筛选模型输入的特征因子。最后,针对大坝变形的滞后性,利用时间注意力机制进一步提高GRU模型对时间维度上的动态特征关注度,增强模型对时间维度信息的自适应学习能力,且对时间注意力进行可视化进一步提高了大坝变形预测模型在隐藏状态阶段上的可解释性。通过工程实例研究结果表明,卡尔曼滤波在大坝变形监测中确实存在一定适用性,同时本文所提出的耦合时间注意力机制的变形预测模型有着较高的预测精度,对于预测过程中的隐藏状态层级有较强的解释性,并揭示了温度与水位因素对大坝变形的长期影响,为大坝变形安全监测提供了一种新的有效方法。

关键词: 大坝变形预测, 变形滞后性, 时间注意力机制, 门控循环单元神经网络, 深度学习

Abstract: Constructing a high-accuracy deformation prediction model of dam structure is of great significance for dam risk assessment and formulation of preventive measures. Previous dam deformation prediction models lack an effective explanation of the time-lag characteristics, and ignore an influence analysis and evaluation of the deformation characteristic factors in model construction, thereby lowering prediction accuracy. This paper presents a Gated Recurrent Unit (GRU) architecture combined with a temporal attention mechanism to overcome these problems. First, a Kalman filter is used to denoise the original dam deformation data series and remove its outliers; then, Random Forest (RF) is used to analyze and evaluate the importance of different deformation characteristic factors, and pick out key model input factors. Finally, to consider the dam deformation lag, a time attention mechanism is used to further improve the attention of the GRU model to the time-dimension dynamic features and to enhance its adaptive learning capability to time-dimension information. This, through visualizing time attention, can further improve the interpretability of a prediction model for the dam deformation in the hidden state stage. The results of engineering case studies show our model, of higher prediction accuracy and strong explanatory power for hidden state levels, can reveal the long-term effects of temperature and water level factors on dam deformation. Thus, it is a new effective method for dam safety monitoring.

Key words: dam deformation prediction, deformation lag, time attention mechanism, gated recurrent unit neural network, deep learning

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn