水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2014, Vol. 33 ›› Issue (6): 25-29.

• 水文水资源、水电规划及动能经济 • 上一篇    下一篇

基于Copula熵的神经网络径流预报模型预报因子选择

  

  • 出版日期:2014-12-25 发布日期:2014-12-25

Determination of input variables for artificial neural networks for flood forecasting using Copula entropy method

  • Online:2014-12-25 Published:2014-12-25

Abstract: One of the key steps in artificial neural networks (ANN) forecasting is the determination of
significant input variables. A partial mutual information (PMI) method was used to characterize the
dependence of a potential model between its input and output variables. We also developed a copula entropy
method for effective calculation of mutual information (MI) and PMI, and verified its accuracy and
performance using numerical tests. This forecasting technique has been applied to a real-world case study of
the Three Gorges reservoir (TGR), and results show that the proposed method is useful and effective for
identification of suitable inputs of flood forecasting model.

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn