水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2022, Vol. 41 ›› Issue (6): 53-64.doi: 10.11660/slfdxb.20220606

• • 上一篇    下一篇

基于迁移学习的长短时记忆神经网络水文模型

  

  • 出版日期:2022-06-25 发布日期:2022-06-25

Hydrological model based on long short-term memory neural network and transfer learning

  • Online:2022-06-25 Published:2022-06-25

摘要: 针对无/缺水文资料地区水文建模的难题,提出了基于迁移学习的长短时记忆神经网络(LSTM)水文模型。以嘉陵江、乌江和岷江流域为例,基于实测水文气象数据,采用K-最近邻算法与土壤和水评价模型(SWAT)模拟生成气象和径流数据,并构建实测和模拟样本集;然后构建不同的网络迁移微调策略和网络学习情景,分析迁移网络的可能性和性能。结果表明,固定网络的细胞层并微调网络其他层时,迁移学习的效果较好;同流域和跨流域进行网络迁移时,迁移后的网络更稳定且精度更高;跨流域迁移时,源流域和目标流域的相似度越高,迁移网络的难度更小,精度更高。该模型为无/缺水文资料地区构建水文模型提供了新的思路。

关键词: 迁移学习, 长短时记忆神经网络, 水文模型, 径流模拟, 微调策略

Abstract: Aimed at the issue of hydrological modeling for the areas without or lacking hydrological data, this paper develops an intelligent hydrological model based on the transfer learning and long short-term memory neural network (LSTM) technology, through a case study of the Jialing River, Wujiang River, and Minjiang River basins . First, based on the measured hydrological and meteorological data, this model adopts the K-nearest neighbor algorithm to simulate meteorological data, and uses the soil and water assessment tool (SWAT) to generate river runoff process, creating measured and simulated sample sets. Then, we design different network transfer fine-tuning strategies and network learning scenarios, examine the possibility of network transfer, and compare the performance and effectiveness of the transferred networks. Results show the effect of transfer learning is better when the cell layer of the network is fixed and the other layers are fine-tuned. The transferred network is more stable and more accurate in the case of the network transfer performed in the same watershed or across watersheds. In cross-watershed transfer learning, higher similarity between the source and target watersheds leads to less difficult work and a higher accuracy in network transfer. Thus, this model is a new idea useful for hydrological model development for the areas without or lacking hydrological data.

Key words: transfer learning, long short-term memory neural network, hydrological model, runoff simulation, fine-tuning strategies

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn