水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2022, Vol. 41 ›› Issue (3): 83-91.doi: 10.11660/slfdxb.20220308

• • 上一篇    下一篇

基于遗传-支持向量回归的离心泵性能曲线预测

  

  • 出版日期:2022-03-25 发布日期:2022-03-25

Prediction of centrifugal pump performance curves based on genetic-support vector regression

  • Online:2022-03-25 Published:2022-03-25

摘要: 针对离心泵多工况下性能预测不准确的问题,提出了一种基于遗传算法和支持向量回归的离心泵多工况性能预测模型。从35组离心泵性能曲线中提取673组多工况性能数据作为本次试验的样本,选择其中538个样本作为训练数据,135个样本为测试数据。选取比转速为32.2、47.2、58.7、92.8、128.2的5台离心泵,分别对其6个不同工况下的扬程和效率进行预测,最后与试验结果进行对比。对比结果表明,所提出的遗传-支持向量回归模型能有效的预测离心泵不同工况下的性能。其中,5台离心泵的扬程和效率的平均相对误差分别为0.49%、3.76%,而神经网络模型预测的扬程和效率的平均相对误差分别为1.12%、4.66%,平均相对误差同比上升128.57%、23.94%。

关键词: 离心泵, 遗传算法, 支持向量回归, 多工况, 性能预测

Abstract: To solve the inaccurate performance prediction of the centrifugal pumps at multi-operation points, we develop a new method based on a genetic algorithm and support vector regression, which is able to predict the energy performance. 673 sets of multi-operation data were extracted from 35 sets of centrifugal pump performance curves as the test samples, and were divided into the training data group of 538 samples and a test data group of 135 samples. We also selected five centrifugal pumps, specific speed 32.2, 47.2, 58.7, 92.8 and 128.2, to verify our method via predicting heads and efficiencies at six operation points and comparing them with test data. Results show that it can effectively predict the performance of the centrifugal pump under different operation conditions. For these five pumps, the average relative errors of the head and efficiency are 0.49% and 3.76% respectively, demonstrating a significant error reduction in comparison to the corresponding neural network model errors of 1.12% and 4.66%, and the average relative errors increased by 128.57% and 23.94%.

Key words: centrifugal pump, genetic algorithm, support vector regression, multi-operation points, performance prediction

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn