水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2022, Vol. 41 ›› Issue (3): 46-59.doi: 10.11660/slfdxb.20220305

• • 上一篇    下一篇

基于多因素相似性的融雪径流预报方法研究

  

  • 出版日期:2022-03-25 发布日期:2022-03-25

Study on forecasting method of snowmelt runoff based on multi-factor similarity

  • Online:2022-03-25 Published:2022-03-25

摘要: 融雪径流是高寒山区水循环的重要组成,其预报对流域水资源综合利用具有重要意义。本文基于流域产汇流机理和冰川积雪融化相关研究,融合物理成因分析和数据挖掘技术的优势,建立基于多因素相似性的融雪径流预报模型,并提出滚动预报方案,实现了7日预见期内逐日径流滚动预报。研究成果在雅砻江干流新龙站的应用表明:对于考虑正积温方案,3 d预见期的平均相对误差小于17%,纳什系数达到0.89;7d预见期的平均相对误差小于21%,纳什系数达到0.83。相比于无正积温方案,3 d、7 d预见期的平均相对误差分别降低2%、6%,纳什系数分别提高0.03、0.08。该方法可定量挖掘一线业务人员“参考过去预测未来”的经验,提供可解释的径流预报结果,能够有效提高径流预报精度、延长预见期。

关键词: 融雪径流, 滚动预报, 相似性, 数据驱动

Abstract: Snowmelt runoff is an important component of the water cycle in alpine areas; its forecast is of great significance to the comprehensive utilization of water resources in a basin. Based on previous studies on watershed confluence mechanism and glacier snow melting, this paper develops a snowmelt runoff forecast model based on the similarity of multiple factors by combining the advantages of physical cause analysis and data mining technology, and works out a plan to achieve a 7-day rolling forecast of daily runoff. Application in a case study of the Xinlong station on the Yalong River shows that this model has an average relative error lower than 17% over the 3 d forecast period, and its Nash coefficient reaches 0.89 for schemes with accumulated positive temperature. For the 7 d forecasts, the error is lower than 21% and the coefficient up to 0.83. This means an error reduction by 2% and 6% and a Nash coefficient increase by 0.03 and 0.08 for the 3 d and 7 d forecasts, respectively, relative to the schemes without accumulated positive temperature. Our method can mine quantitatively the experience of referring to the past and forecasting the future from front-line business personnel, and provide interpretable runoff forecast results, significantly improving runoff forecast accuracy and extending forecast periods.

Key words: Snowmelt runoff, rolling forecast, similarity, data-driven

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn