|
||
水力发电学报 ›› 2022, Vol. 41 ›› Issue (3): 32-45.doi: 10.11660/slfdxb.20220304
摘要: 流域径流过程与大尺度气候因子之间存在遥相关关系,如何从众多的水文、气象、大气环流及洋流等因子中找出与径流密切关联的因子,是中长期径流预报的一个难题。将基于贝叶斯优化的随机森林模型应用于对水文、气象、气候因子构成的高维度因子集进行因子选择,根据变量重要性评分挑选对月径流影响较大的预报因子,构建广义回归神经网络、极限学习机、支持向量回归径流预报模型。将该方法应用到金沙江流域,相较于线性相关法,基于随机森林输入因子选择的方法提高了模型泛化性能;遥相关因子的引入既实现了流域月径流高精度预报,又从物理机制上提供了支撑。
京ICP备13015787号-3 版权所有 © 2013《水力发电学报》编辑部 编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |