水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2022, Vol. 41 ›› Issue (1): 63-73.doi: 10.11660/slfdxb.20220107

• • 上一篇    下一篇

土石坝料压实特性改进多输出预测模型研究

  

  • 出版日期:2022-01-25 发布日期:2022-01-25

Study on improved multi-output prediction model for compaction characteristics of earth-rock dam materials

  • Online:2022-01-25 Published:2022-01-25

摘要: 土石坝料压实特性对保证大坝施工质量至关重要。然而,当前坝料压实特性预测主要是对物理、力学和渗透压实特性的单输出回归预测,缺乏对各压实特性目标间相关性的考虑。针对上述问题,提出土石坝料压实特性的改进多输出高斯过程回归(IMO-GPR)预测模型。采用具有噪声的基于密度的聚类方法构建目标特定特征,对多输出高斯过程回归(MO-GPR)模型原始输入空间进行特征扩展,提高模型高维特征空间复杂映射关系解耦能力;同时,结合MO-GPR模型中的输出协方差系数矩阵,实现对多输出压实特性目标间相关性的有效考虑,以最终实现多输出压实特性精确预测。相比传统的高斯过程回归(GPR)、多输出极限学习机(MO-ELM)和MO-GPR模型,所提IMO-GPR模型的预测精度分别提高了24%、20%和17%,且对噪声干扰、数据异常、数据量少等情况具有更强的鲁棒性,为土石坝料压实特性分析提供了新思路。

关键词: 土石坝料, 压实特性, 改进多输出高斯过程回归模型, 目标特定特征, 目标相关性

Abstract: The characteristics of earth-rock dam compaction are crucial to construction quality. Previous predictions mainly focused on the single-output regression of the physical, mechanical and seepage compaction characteristics, lacking consideration of the correlation among the objectives of different compaction characteristics. To address this issue, we develop an improved multi-output Gaussian process regression (IMO-GPR) model that builds target-specific features using density-based spatial clustering of applications with noise and extends the MO-GPR model input space to improve its decoupling capability of complicated mapping in the high-dimensional feature space. This improved model considers effectively the correlation between multi-output compaction characteristic objectives through combining with the output covariance coefficient matrix used by MO-GPR, and can realize accurate predictions of multi-output dam material compaction characteristics. Compared with traditional GPR, MO-ELM, and MO-GPR models, its prediction accuracy is 24%, 20% and 17% higher respectively, and it has stronger robustness in the cases of noise interference, abnormal data, and insufficient data.

Key words: earth-rock dam material, compaction characteristics, improved multi-output Gaussian process regression model, target-specific feature, objective correlation

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn